
Variables and Loops in FFmpeg
Scripts

Variables, Array Variables,
and For Loops

Agenda

● Variables / For Loops
● Piping
● Mapping

Variables/For Loops

● Free for 30 days
● Download test files and scripts

Course URL: https://bit.ly/var_4loops

Click here for free: https://bit.ly/variables_free

Coupon Code = SME_2023

Lesson 1: Introduction

● Why variables

● What variables are

● About scripting languages

● Executing a Bash script

Why Variables?

● FFmpeg command lines quickly become quite long and unwieldy.

● When variations of the same command line are needed (for example to
generate multiple rungs in a ladder, for multiple files), it can quickly become
error-prone to re-write them, or copy-paste-modify them

● A script makes it possible to write the command once, and quickly and
easily modify just the relevant parameters within it, providing consistency
and speed.

What Variables Are

ffmpeg -y -i input.mp4 -c:v libx264 -vf scale=-1:1080 -b:v 3M -maxrate 6M -bufsize 6M -g
48 -preset ultrafast output.mp4

height=1080
bitrate="3M"
maxrate="6M"
bufsize="6M"
gop=48
preset="ultrafast"

ffmpeg -y -i input.mp4 -c:v libx264 -vf scale=-1:${height} -b:v ${bitrate} -maxrate
${maxrate} -bufsize ${bufsize} -g ${gop} -preset ${preset} output.mp4

Command Line (Before)

Variables - After

Why Variables?

ffmpeg -y -re -i Freedom.mp4 \
-y -c:v libx265 -g 60 -preset medium -tune psnr -b:v 6M -maxrate 6M -bufsize 12M
Freedom/Freedom_x265_medium_6M_PSNR.mp4 \
-y -c:v libx265 -g 60 -preset medium -tune psnr -b:v 5M -maxrate 5M -bufsize 10M
Freedom/Freedom_x265_medium_5M_PSNR.mp4 \
-y -c:v libx265 -g 60 -preset medium -tune psnr -b:v 4M -maxrate 4M -bufsize 8M
Freedom/Freedom_x265_medium_4M_PSNR.mp4 \
-y -c:v libx265 -g 60 -preset medium -tune psnr -b:v 3M -maxrate 3M -bufsize 6M
Freedom/Freedom_x265_medium_3M_PSNR.mp4

Command Line (Before)

Why Variables?
Variables After

#variables
preset=medium
tune=psnr
GOP=60
bitrate1=6.0M
bufsize1=12.0M
bitrate2=5.0M
bufsize2=10.0M
bitrate3=4.0M
bufsize3=8.0M
bitrate4=3.0M
bufsize4=6.0M

input="Freedom.mp4“
base=$(basename ${input%.*})
outputfolder="./outputs/$base“
mkdir -p $outputfolder

ffmpeg -re -i ${input} \
-c:v libx265 -g ${GOP} -preset ${preset} -tune ${tune} -threads 8 -bf 3 -b:v
${bitrate1} -maxrate ${bitrate1} -bufsize ${bufsize1}
${outputfolder}/${base}_x265_${preset}_${bitrate1}_${tune}.mp4
-c:v libx265 -g ${GOP} -preset ${preset} -tune ${tune} -threads 8 -bf 3 -b:v
${bitrate2} -maxrate ${bitrate2} -bufsize ${bufsize2}
${outputfolder}/${base}_x265_${preset}_${bitrate2}_${tune}.mp4
-c:v libx265 -g ${GOP} -preset ${preset} -tune ${tune} -threads 8 -bf 3 -b:v
${bitrate3} -maxrate ${bitrate3} -bufsize ${bufsize3}
${outputfolder}/${base}_x265_${preset}_${bitrate3}_${tune}.mp4
-c:v libx265 -g ${GOP} -preset ${preset} -tune ${tune} -threads 8 -bf 3 -b:v
${bitrate4} -maxrate ${bitrate4} -bufsize ${bufsize4}
${outputfolder}/${base}_x265_${preset}_${bitrate4}_${tune}.mp4

Scripting Languages
● There are many scripting languages

● This lesson covers Bash scripting for Linux & MacOS

● All scripts tested on an AWS Ubuntu instance

○ Windows:
○ Cannot use normal command window

○ Must use PowerShell (not covered in this session)

⚠ Disclaimer: We wrote all examples to be as easy to read as possible. Bash often has more
advanced mechanisms that may be more efficient/much less verbose, but also more
challenging to understand. For this course, we assumed that simpler is better

What is a Shell script?

● A text file

● Typically topped with the
Shebang (#!/bin/bash)

● Tells the kernel which interpreter to
use to run the commands in the file

● With a .sh extension

Writing Scripts

● Can write scripts in any text editor
● Script editor like Notepad ++ does

some advanced formatting and
error checking

● If you’re creating scripts on one OS
(Windows) and executing on Linux,
be sure to save script in Unix format
○ Otherwise, hidden line continuation

characters can cause funky errors

Target script

We will build a script that will:

● Create a ladder of H.264 MP4 rungs at different resolutions and bitrates
● Make it simple to define a GOP size and x264 preset
● Build such a ladder for more than one input file
● Name the output files automatically, on the basis of the rung spec and

input file name

The main FFmpeg command that we will use:

ffmpeg -y -i input.mp4 -c:v libx264 -vf scale=-1:1080 -b:v 3M -maxrate 6M -bufsize 6M -g
48 -preset ultrafast output.mp4

Executing a simple script
● Add that simple FFmpeg command line in a file called script1-minimal.sh (in

the same folders as input.mp4)

● Before you run a Bash script, you must authorize its execution by typing the
following line in the terminal

● Then, run the script

chmod +x script1-minimal.sh

./script1-minimal.ps1

script1-minimal.sh

ffmpeg -y -i input.mp4 -c:v libx264 -vf scale=-1:1080 -b:v 3M -maxrate 6M -
bufsize 6M -g 48 -preset ultrafast output_command.mp4

output

Lesson 2: Creating and Using Variables

● Variables allow information to be contained and referenced later in a script

● And to label data with a descriptive name

For example, let’s set the codec parameters through variables:

ffmpeg -y -i input.mp4 -c:v libx264
-vf scale=-1:1080 -b:v 3M -maxrate 6M -bufsize 6M -g 48 -preset ultrafast output.mp4

height bitrate maxrate bufsize gop preset

Using Variables
● Define a variable by an alphanumeric name
● Assign a value to the variable with the equal

sign (=) without spaces
● If the value is a string, surround by quotes (")
● Reference the variable with the variable name

in braces, preceded by a dollar sign
● Note: in Bash a command can be written over

multiple lines of a script by ending each line (but the
last one) with a backslash (\)

height=1080

bitrate="3M"

maxrate="6M"

bufsize="6M"

gop=48

preset="ultrafast"

ffmpeg -y -i input.mp4 -c:v libx264 \

-vf scale=-1:${height} -b:v ${bitrate} \

-maxrate ${maxrate} -bufsize ${bufsize} \

-g ${gop} -preset ${preset} output.mp4

script2-variables.sh

script2-variables.sh

● Run
● Verify files

○ FFmpeg doesn’t return the
same file each time

○ Some light variations
○ Very, very close

From Original Command Line

From Variables

Lesson 3: Checking and Debugging Your Strings

Let’s separate the building of the command line from its execution

This allows us to:

● Print it on screen (so we can validate it, or troubleshoot the script)
● Add it to a log file (again, for validation and troubleshooting later on)

Deferred Execution
● Build the command as a string, surrounded

by quotes (").
● It can span multiple lines without special

characters needed
● As before, variable values are inserted in

the string by referencing variable names
surrounded by ${}

● echo prints it on screen
● Execute command by surrounding it in $()
● Let’s run it

gop=48

preset="ultrafast"

height=1080

bitrate="3M"

maxrate="6M"

bufsize="6M"

cmd="

ffmpeg -y -i input.mp4 -c:v libx264

-vf scale=-1:${height} -b:v ${bitrate}

-maxrate ${maxrate} -bufsize ${bufsize}

-g ${gop} -preset ${preset} output.mp4

"

echo $cmd

$($cmd)

script3-deferred.sh

With and Without Deferred Execution

Script2-variables.sh

Script3-deferred.sh

Sent to FFmpeg

Logging to File
● When followed by redirection operators (>),

echo writes the value of the variable to a
file, instead of to screen

● By doubling the redirection operator (>>),
the string is appended to the file. Otherwise
a new file will be written, or overwritten if it
already exists

● Let’s run it

gop=48
preset="ultrafast"
height=1080
bitrate="3M"
maxrate="6M"
bufsize="6M"

cmd="
ffmpeg -y -i input.mp4 -c:v libx264
-vf scale=-1:${height} -b:v ${bitrate}
-maxrate ${maxrate} -bufsize ${bufsize}
-g ${gop} -preset ${preset} output.mp4

"

echo $cmd
echo $cmd >> log.txt

$($cmd)

script3b-logging.sh

Here’s the Log File

• Shows the command sent to FFmpeg
– not the original script

• Invaluable debugging tool
• If script isn’t working, check the log file

• I include in all my scripts

gop=48

preset="ultrafast"

height=1080

bitrate="3M"

maxrate="6M"

bufsize="6M"

cmd="

ffmpeg -y -i input.mp4 -c:v libx264

-vf scale=-1:${height} -b:v ${bitrate}

-maxrate ${maxrate} -bufsize ${bufsize}

-g ${gop} -preset ${preset} output.mp4

"

echo $cmd

echo $cmd >> log.txt

$($cmd)

Lesson 4: File and Filename Manipulation

● Previous lessons
○ Encode single file from current folder
○ Stored encoded files in current folder

● In this lesson, you’ll learn to
○ Retrieve files from different locations
○ Store files in different locations

■ Dynamically name and create folders based upon input file

Filename Manipulation
● We create variable input for the input file
● We introduce a new variable – base - to name

output files
● basename returns the filename (without path)
● ${input%.*} removes any file extension
● $() wraps the expression to execute it and store

its output in the variable.
● Create variable Outputfolder –to store file(s)
● mkdir -p creates any named folder and

subfolder that don’t yet exist
● We build the output variable from multiple

variables
● Finally, the new variables are used in the

command line

Note: lines starting with # denote comments. It’s a
good idea to comment your script to explain (to your
future you) what is happening

(... variables as before ...)

folders and filenames
input="./sources/input.mp4"
base=$(basename ${input%.*})
outputfolder="./outputs/$base"
mkdir -p $outputfolder
output="${outputfolder}/${base}_${height}p_
${bitrate}_${preset}.mp4"

cmd="
ffmpeg -y -i ${input} -c:v libx264
-vf scale=-1:${height} -b:v ${bitrate}
-maxrate ${maxrate} -bufsize ${bufsize}
-g ${gop} -preset ${preset} ${output}

"

(...)

script4-filenames.sh

script4-filenames.sh

● Files in /sources (need
folder and input.mp4)

● Script creates outputs
folders

● Script creates input folder
(from file name)

● Script produces the file

Start – Need Sources folder

Script Creates Output Folder

Script Creates Base Folder (from file name)

Script Creates and Output Files

Lesson 5: Encoding Multiple Input Files

● For loops
○ Iteratively encode selected files

● Two ways to select files
○ Array variables - list files directly
○ File lists - point to folders and conditions and OS chooses files

For Loops

(...)

mkdir -p output

for file in *.mp4

do

ffmpeg -y -i $file -c:v libx264 \

-vf scale=-1:${height} -b:v ${bitrate} \

-maxrate ${maxrate} -bufsize ${bufsize} \

-g ${gop} -preset ${preset} \

output/"${file%.*}_${bitrate}_${preset}.mp4"

done

script5-forloop.sh
● This script encodes all MP4 files in a folder and

stores them in the output folder
● Mkdir –p output – creates the output folder (-p creates

parent and doesn’t stop if folder already exists)

● for … in … iterates through all the items one by one and
assigns each to the variable file in turn

● For file in *.mp4 perform the for loop on all MP4 files
in that folder

● The section of code between do and done is the set of
commands performed in each selected file

● Output to output folder (otherwise would start cycle
again on encoded MP4 files)

For Loops

● Script must be in folder with MP4 files

● Will create output folder

● Let’s run it

● Quick and dirty way to illustrate for loops;
use this for simple production tasks (like
encoding multiple files to CRF)

● So, loop runs on all selected files
● Can select files with array variables

● Or via file lists (like we did here, but more useable)

Array Variables

(...)

list of source files

inputfolder=./sources

files=(“BBB.mp4” “sintel.mp4” “TOS.mp4”)

for file in ${files[@]}

do

input="./sources/${file}”

(... code as before to define output filename

and execute the ffmpeg command ...)

done

script5-array.sh
● An array variable is explicitly defined as a list

of items, surrounded by parenthesis () and
separated by spaces

● for … in … iterates through all the items in
that array variable one by one and runs it
through the script

● ${files[@]} returns all elements in the
variable as a list and loop through that list

● The section of code between do and done is the
set of commands performed in each iteration

● Review script5-array.sh

Listed files must be
in /sources folder

Listing the files

● Instead of explicitly listing all assets within the script, we can ask the
operating system to create a list

● We can then work directly from that list, instead storing it into an
array variable (but we could also do both)

File list

(...)

list of source files

inputfolder=./sources

files=$(ls $inputfolder/*.mp4)

for input in ${files[@]}

do

(... code as before to define output filename

and execute the FFmpeg command ...)

done

script5-filelist.sh

● ls lists all the files in the input folder
with an “mp4” file extension

● Surrounding it with $() makes Bash
execute that command and store its
output into an array

● We can then use the item-based for
loop as before to iterate through that
collection

● Lets run it
● Show sources

● Delete output folder

Generating a Ladder

● Let’s modify the script to generate a full ladder for each input asset
● Configure each rung with a different resolution, bitrate, maxrate

and bufsize
● Create multiple array variables, one for each encoding parameter
● Use an index-based loop to select the parameters for each rung

○ Create two for loops:
■ One for the rungs
■ One (as before) for the input files

Lesson 6: Index-based loop
● Create 4 array variables, each with 3 items
● ${!heights[@]} returns the list of indices in

the array
● for … in … iterates through those indices

and assigns each one in turn to the variable
rung.

● In each iteration, we extract the item from
an array by its position. This is done by the
expression ${heights[$rung]} in which the
variable between the square brackets is the
index of the item.

● This new loop is inside the original loop

array variables define the rungs
heights=(360 540 1080)
bitrates=(500k 1M 2M)
maxrates=(1M 2M 4M)
bufsizes=(1M 2M 4M)

(... listing files as before ...)

for input in ${files[@]}
do

for rung in ${!heights[@]}
do

height=${heights[$rung]}
bitrate=${bitrates[$rung]}
maxrate=${maxrates[$rung]}
bufsize=${bufsizes[$rung]}

output="${outputfolder}/${base}_${height}p_
${bitrate}_${preset}.mp4"

cmd="
ffmpeg -y -i ${input} -c:v libx264
-vf scale=-1:${height} -b:v ${bitrate}
-maxrate ${maxrate} -bufsize ${bufsize}
-g ${gop} -preset ${preset} ${output}

"

script6-indices.sh

Lesson 6: Index-based loop
● Note key details

● Array variables input into dynamic
variables

● Dynamic variables input into
command

● Minor details can hose operation
○ With attention, can adopt script to any

codec or set of encoding parameters
● Review entire script
● Run script

array variables define the rungs
heights=(360 540 1080)
bitrates=(500k 1M 2M)
maxrates=(1M 2M 4M)
bufsizes=(1M 2M 4M)

(... listing files as before ...)

for input in ${files[@]}
do

for rung in ${!heights[@]}
do

height=${heights[$rung]}
bitrate=${bitrates[$rung]}
maxrate=${maxrates[$rung]}
bufsize=${bufsizes[$rung]}

output="${outputfolder}/${base}_${height}p_
${bitrate}_${preset}.mp4"

cmd="
ffmpeg -y -i ${input} -c:v libx264
-vf scale=-1:${height} -b:v ${bitrate}
-maxrate ${maxrate} -bufsize ${bufsize}
-g ${gop} -preset ${preset} ${output}

"

script6-indices.sh

Piping

● What is it: using FFmpeg to create a file to pass to another
program within storing the file
○ Useful when creating intermediate files would consume too much disk space

or would be too time consuming
● Example: x265 encoder needs raw file for input

○ Convert source to raw in FFmpeg
○ Pass to x265 for encoding

Piping: Raw File to x265 Encoder

● Procedure:
○ Get command strings working separately
○ Then combine, substituting – (dash) for output file name and input file name and

inserting pipe symbol

ffmpeg -y -i Football_short.mp4 -an -f rawvideo file.yuv

x265_main.exe --input file.yuv --input-res 1920x1080 --preset 5 --fps 29.97 --frame-
threads 1 --no-wpp --pools 1 -o football_short.hevc

ffmpeg -y -i Football_short.mp4 -an -f rawvideo - | x265_main.exe --input - --input-res
1920x1080 --preset 5 --fps 29.97 --frame-threads 1 --no-wpp --pools 1 -o
football_short_2.hevc

Piping: Decode HEVC File to Raw for MSU VQMT

● Procedure:
○ Worked fine separately
○ Needed special language to make it work

■ Had to use designated format from MSU docs
■ Had to use pipe: rather than -

ffmpeg -y -i football_short_2.hevc -an -f rawvideo football_short.yuv

"C:\Program Files\MSU VQMT 14.0 beta\msu_metric_14.1.exe" -in "Football_short.mp4" -in
football_short.yuv 1920x1080 YUV420p -csv -metr psnr over Y -resize lanczos to orig

ffmpeg -y -i football_short_2.hevc -an -f yuv4mpegpipe -pix_fmt yuv444p pipe: | "C:\Program
Files\MSU VQMT 14.0 beta\msu_metric_14.1.exe" -in Football_short.mp4 -in pipe: 1920x1080
yuv444p -csv -metr psnr over Y -resize lanczos to orig

Piping

● Each case feels unique
● May need some custom tweaking to make it work
● Few good resources to learn (trial and error)

Mapping

● Selecting streams within a file to
customize an output
○ Can be native streams within a file

(audio/video streams)
○ Named streams within an FFmpeg

script

● Elektra
○ One video file
○ Audio 1/2 are left/right Spanish
○ Audio 3/4 are left/right English

Mapping

Can map in
absolute position

-map 0:0
-map 0:1
-map 0:2
-map 0:3
-map 0:4

Add video/audio
designator:

-map 0:v:0
-map 0:a:0
-map 0:a:1
-map 0:a:2
-map 0:a:3

File Stream File Stream

In both cases, 0 is the first stream

Creating Separate Language files

ffmpeg -y -ss 00:42:55 -i elektra.mxf -map 0:v:0 -map 0:a:0 -map 0:a:1 -t 00:00:40 –c
copy elektra_Spanish_1.mxf

ffmpeg -y -ss 00:42:55 -i elektra.mxf -map 0:v:0 -map 0:a:2 -map 0:a:3 -t 00:00:40 –c
copy elektra_English_1.mxf

ffmpeg -y -ss 00:42:55 -i elektra.mxf -map 0:0 -map 0:1 -map 0:2 -t 00:00:40 –c copy
elektra_Spanish.mxf

ffmpeg -y -ss 00:42:55 -i elektra.mxf -map 0:0 -map 0:3 -map 0:4 -t 00:00:40 –c copy
elektra_English.mxf

Absolute

A/V Designator

Scaling: Mapping to Command String Designators

ffmpeg -y -i elektra_English_1.mxf -y ^
-filter_complex
“[0:v]split=3[out1080p][out1080p2][in1080p];[in1080p]scale=1280:720:flags=fast_bilin
ear,split=2[out720p][in720p];[in720p]scale=640:360:flags=fast_bilinear[out360p]” ^
-map [out1080p] -c:v libx264 -b:v 3.5M -maxrate 3.5M -bufsize 7M -preset ultrafast
Elektra_1080p_3_5M.mp4 ^
-map [out1080p2] -c:v libx264 -b:v 1.8M -maxrate 1.8M -bufsize 3.6M -preset ultrafast
Elektra_1080p_1_8M.mp4 ^
-map [out720p] -c:v libx264 -b:v 1M -maxrate 1M -bufsize 2M –preset ultrafast
Elektra_720p_1M.mp4 ^
-map [out360p] -c:v libx264 -b:v .5M -maxrate .5M -bufsize 1M -preset ultrafast
Elektra_360p_500K.mp4

Mapping Resources

● FFmpeg Wiki - bit.ly/FF_Wiki_Map
● FFmpeg Documentation - bit.ly/FF_docs_map
● Write blog - bit.ly/Write_map

https://bit.ly/FF_Wiki_Map
https://bit.ly/FF_docs_map
https://bit.ly/Write_map

	Variables and Loops in FFmpeg Scripts
	Agenda
	Variables/For Loops
	Lesson 1: Introduction
	Why Variables?
	What Variables Are
	Why Variables?
	Why Variables?
	Scripting Languages
	What is a Shell script?
	Writing Scripts
	Target script
	Executing a simple script
	script1-minimal.sh
	Slide Number 15
	Lesson 2: Creating and Using Variables
	Using Variables
	Slide Number 18
	script2-variables.sh
	Lesson 3: Checking and Debugging Your Strings
	Deferred Execution
	Slide Number 22
	With and Without Deferred Execution
	Logging to File
	Here’s the Log File
	Lesson 4: File and Filename Manipulation
	Filename Manipulation
	Slide Number 28
	script4-filenames.sh
	Lesson 5: Encoding Multiple Input Files
	For Loops
	For Loops
	Slide Number 33
	Array Variables
	Slide Number 35
	Listing the files
	File list
	Slide Number 38
	Generating a Ladder
	Lesson 6: Index-based loop
	Lesson 6: Index-based loop
	Slide Number 42
	Piping
	Piping: Raw File to x265 Encoder
	Piping: Decode HEVC File to Raw for MSU VQMT
	Piping
	Mapping
	Mapping
	Creating Separate Language files
	Scaling: Mapping to Command String Designators
	Mapping Resources

