Encoding AV1 with Open Source Alternatives

Jan Ozer janozer@gmail.com

Agenda

- Producing Libaom-AV1
- Producing SVT-AV1
- How they compare

FFmpeg libaom-AV1

- Overview
- Encoding basics
 - Encoding string starting point
 - Passes
 - Presets
 - \circ Threads

Overview

FFmpeg uses the libaom-av1 codec from the Alliance for Open Media.

FFmpeg documents the basic switches <u>here</u> (<u>bit.ly/ffmpeg_av1</u>). You can find basic command strings at the <u>FFmpeg</u> Wiki.

Encoding Basics

FFmpeg can accept almost any file input; no need to convert to YUV/Y4M

Two-line encoding string for target bitrate (bit.ly/av1_guide)

ffmpeg -i input.mp4 -c:v libaom-av1 -b:v 2M -pass 1 -an -f null /dev/null && \
ffmpeg -i input.mp4 -c:v libaom-av1 -b:v 2M -pass 2 -c:a libopus output.mkv

- -c:v libaom-av1 use the libaom-av1 codec
- -b:v bitrate video
- -an No audio
- -pass 1 -f null first pass no output (Linux)
- -pass 2 second pass
- output.mkv output file

Encoding Basics

Setting maximum bitrate, and I-frame parameters

```
ffmpeg -y -i Football_10.mp4 -c:v libaom-av1 -b:v 1500K -g 60 -
keyint_min 60 -pass 1 -f matroska NUL & \
```

ffmpeg -y -i Football_10.mp4 -c:v libaom-av1 -b:v 1500K -maxrate 3000K
-g 60 -keyint_min 60 -pass 2 Football_1.mkv

- -g 60 GOP size (I-frame interval). Setting to 60 frames (2-seconds for 30 fps file).
- -keyint_min 60 set minimum keyframe interval at GOP size (essentially telling FFmpeg not to insert I-frames at scene changes)
- -f matroska Identifying format of final file (typical approach)
- -maxrate 3000K Setting maximum rate
- -pass 2 second pass
- output.mkv output file

Decision: One or Two Passes

1-Pass

ffmpeg -y -i input.mp4 -c:v libaom-av1 -b:v 1500K -maxrate 3000K -g 60
-keyint_min 60 -cpu-used 4 output_1pass.mkv

<u>2-Pass</u>

ffmpeg -y -i input.mp4 -c:v libaom-av1 -b:v 1500K -g 60 -keyint_min 60
-cpu-used 8 -pass 1 -f matroska NUL & \

ffmpeg -y -i input.mp4 -c:v libaom-av1 -b:v 1500K -maxrate 3000K -g 60
-keyint min 60 -cpu-used 4 -pass 2 output 2pass.mkv

Decision 1: One Pass or Three-Pass

Feature Analysis:

- Encode two/three files using different alternatives (here 1pass/2pass)
- Measure
 - Encoding time
 - Bitrate/bitrate accuracy
 - VMAF (overall quality)
 - Low-frame VMAF (transient issues)
 - Standard deviation (variability)
 - Green is good/yellow bad

Single/Two Pass				
Encoding time	1-pass	2-pass	Delta	
Freedom	0:05:38	0:05:14	7.10%	
Football	0:03:55	0:03:56	0.42%	
Easv Hard	0:06:57	0:06:29	6.71%	
Average	0:05:30	0:05:13	5.15%	
bitrate	1-pass	2-pass	Delta	
Freedom	1,478	1,479	0.07%	
Football	1,494	1,528	2.23%	
Easy Hard	1,513	1,610	6.02%	
Average	1,495	1,539	2.86%	
Delta from 1500	-0.33%	2.60%		
VMAF	1-pass	2-pass	Delta	
Freedom	84.81	85.15	0.39%	
Football	82.18	85.10	3.43%	
Easv Hard	83.02	87.30	4.91%	
Average	83.34	85.85	2.93%	
Low Frame	1-pass	2-pass	Delta	
Freedom	76.91	77.58	0.87%	
Football	58.55	66.41	11.83%	
Easy Hard	54 91	67 92	19 15%	
Average	<u>63.46</u>	70.64	10.16%	
Standard Deviation	1-pass	2-pass	Delta	
Freedom	3.69	3.23	12.42%	
Football	10.47	6.74	35.59%	
Easy Hard	13.20	9.51	28.45%	
Average	9.15	6.49	29.02%	

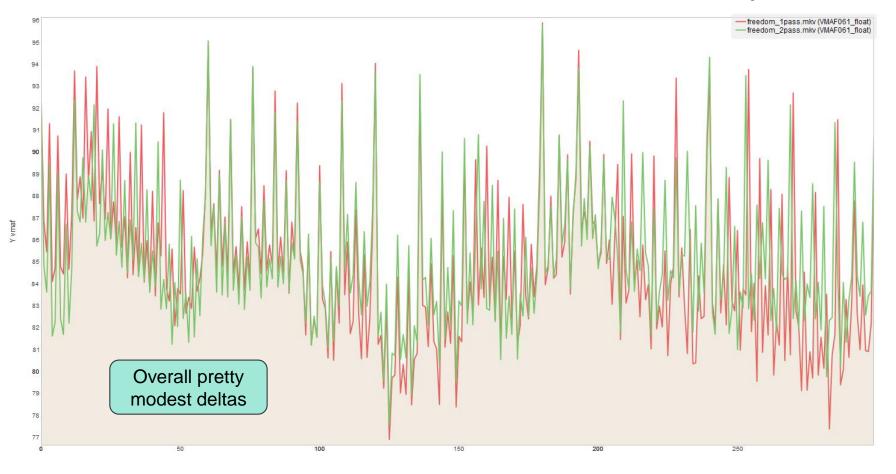
Football

Source: Josiah Weaver concert

Easy Hard

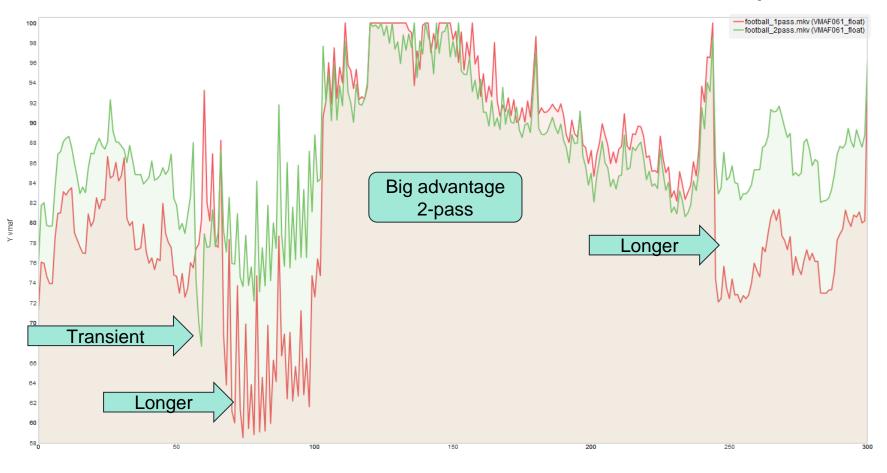
- 6 seconds tutorial, 6 seconds Rust computer game (very hard to encode)
- Why? Test bitrate control

Decision 1: One Pass or Three-Pass

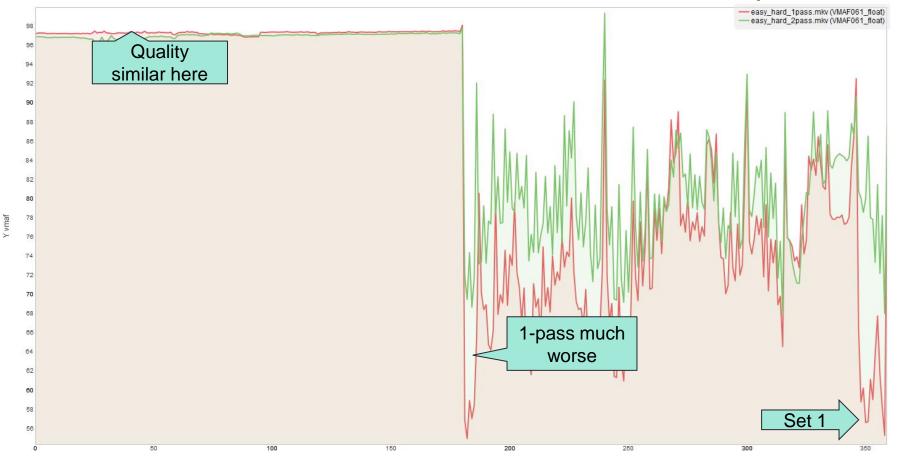

Feature Analysis:

- Time:
 - One-pass is 5% longer
- Bitrate:
 - 1-pass does a better job achieving target bitrate (lower delta from 1500 target)
 - Had to adjust Football to lower bitrate
- VMAF average two-pass is 2.5 higher
- Low-frame (transient issues)
 - 2-pass is meaningfully lower on all clips, particularly easyhard.
- Standard deviation (quality variability)
 - 1-pass substantially higher

	Single/Two Pass	1		
	Encoding time	1-pass	2-pass	Delta
	Freedom	0:05:38	0:05:14	7.10%
	Football	0:03:55	0:03:56	0.42%
_	Easv Hard	0:06:57	0:06:29	6.71%
	Average	0:05:30	0:05:13	5.15%
	bitrate	1-pass	2-pass	Delta
	Freedom	1,478	1,479	0.07%
	Football	1,494	1,528	2.23%
	Easv Hard	1.513	1.610	6.02%
	Average	1,495	1,539	2.86%
	Delta from 1500	-0.33%	2.60%	
	VMAF	1-pass	2-pass	Delta
	Freedom	84.81	85.15	0.39%
	Football	82.18	85.10	3.43%
	Easy Hard	83.02	87 30	4 91%
	Average	83.34	85.85	2.93%
	Low Frame	1-pass	2-pass	Delta
	Freedom	76.91	77.58	0.87%
	Football	58.55	66.41	11.83%
	Easy Hard	54 91	67 92	19 15%
l	Average	63.46	70.64	10.16%
	Standard Deviation	1-pass	2-pass	Delta
	Freedom	3.69	3.23	12.42%
	Football	10.47	6.74	35.59%
r	Fasy Hard	13 29	9.51	28.45%
l	Average	9.15	6.49	29.02%

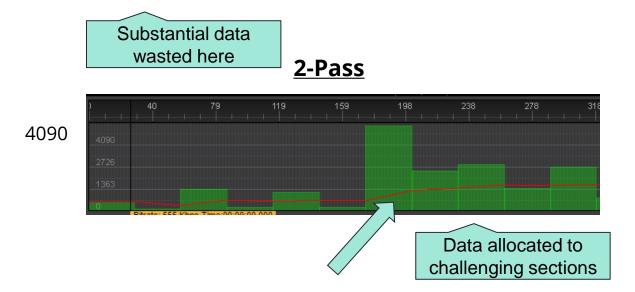

Results Plots and Frames - Freedom

Red = 1-Pass Green = 2-pass


Results Plots and Frames - Football

Red = 1-Pass Green = 2-pass

Results Plots and Frames - Easy_Hard


Red = 1-Pass Green = 2-pass

Data Rate Allocation

- Classic 1-pass vs. multiplepass 2571
- 1-pass don't know where difficult sections are
- Multiple-pass
 - Scan once, ID easy and hard regions
 - Then encode

<u>1-Pass</u>

E:\archives\AV1_Trials\AV1_FFmpeg_2022\single_multiple\easy_hard2.mp4

Source

267

Y Netflix VMAF VMAF061_floet 1-st proc 56.603668 Netflix VMAF VMAF061_floet 2-nd proc 79.960904

Y Netflix VMAF VMAF061_float 1-st proc 56.603668 Netflix VMAF VMAF061_float 2-nd proc 79.960904 2-Pass

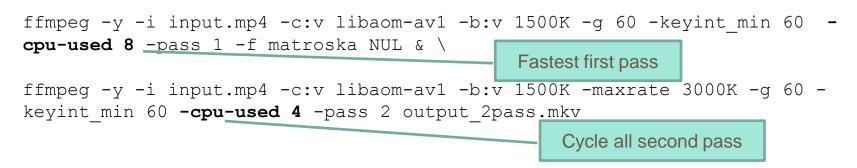
Participant Provide a contract of the contract

Decision 1: One Pass or Two-Pass

Feature Analysis:

- Time:
 - One-pass is 5% higher
- Bitrate:
 - 2-pass does a better job achieving target bitrate (lower delta from 1500 target)
- VMAF average 2.5 higher (mostly easyhard)
- Low-frame (transient issues)
 - 2-pass is meaningfully lower on all clips, particularly easyhard.
- Standard deviation (quality variability)
 - o 1-pass substantially higher

Conclusion: 2-Pass where available (not live)


	Single/Two Pass						
	Encoding time	1-pass	2-pass	Delta			
	Freedom	0:05:38	0:05:14	7.10%			
	Football	0:03:55	0:03:56	0.42%			
_	Easy Hard	0:06:57	0:06:29	6.71%			
Г	Average	0:05:30	0:05:13	5.15%			
	bitrate	1-pass	2-pass	Delta			
	Freedom	1,478	1,479	0.07%			
	Football	1,494	1,528	2.23%			
_	Easy Hard	1,513	1,610	6.02%			
	Average	1,495	1,539	2.86%			
Г	Delta from 1500	-0.33%	2.60%				
	VMAF	1-pass	2-pass	Delta			
	Freedom	84.81	85.15	0.39%			
	Football	82.18	85.10	3.43%			
_	Easy Hard	83.02	87.30	4.91%			
L	Average	83.34	85.85	2.93%			
	Low Frame	1-pass	2-pass	Delta			
	Freedom	76.91	77.58	0.87%			
	Football	58.55	66.41	11.83%			
_	Easy Hard	54.91	67.92	19.15%			
L	Average	63.46	70.64	10.16%			
	Standard Deviation	1-pass	2-pass	Delta			
	Freedom	3.69	3.23	12.42%			
	Football	10.47	6.74	35.59%			
_	Easy Hard	13.29	9.51	28.45%			
	Average	9.15	6.49	29.02%			

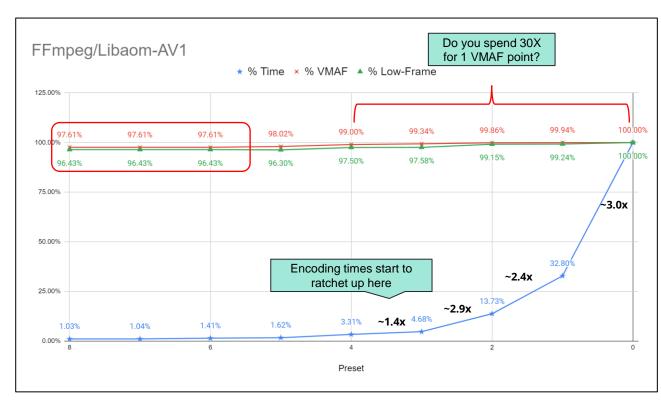
Key Performance/Quality-Related Parameters

aomenc Command	Function	Strategy	FFmpeg Equivalent	Default?
-cpu-used	Encoding time/ quality tradeoff	Choose best option (3 appears to be it)	-cpu-used	8
-auto-alt-ref	Enable automatic alt reference frames	Ensure enabled	-auto-alt-ref	On by default
-threads	Set number of threads used	Set desired limit	-threads	Not specified (seems like up to 8)
-tile-columns 1 tile-rows 0	Divides frame into sections for faster encoding	Use if helpful	same	Not deployed
-row-mt	Enable row based multi- threading Ensure enabled		-row-mt	on by default
-lag-in-frames	Number of frames to look ahead at for alternate reference frame selection	2	-lag-in- frames	listed as -1 Appears to be 25

Decision: Choosing a Preset

- Preset controls quality/encoding time tradeoff
- Tests
 - Encode 3 clips to all presets
 - Record encoding time, VMAF and low-Frame VMAF
- Encoding parameters (results will change if you use different parameters)
 - Two-pass (significant difference)
 - VBR
 - 2-second keyframe
- Test files will also make a difference
- So, customize for your files and encoding parameters as much as possible before performing these test

Presets

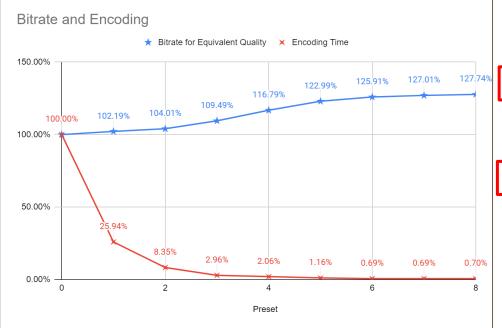

- Total time for all three files (other tests done with 2 ten-second files)
 - Time
 - VMAF
- Max delta
 - \circ $\,$ 2.39% for VMAF $\,$
 - \circ $$ 3.57% for Low-Frame
- SVT-AV1 has much greater range of scores and times
- At fastest (preset 8), it takes 96:58 minutes to encode 8:25 (min:sec), so at best ~11.5x real time
 - SVT AV1 offers multiple presets that are faster than real time, albeit with much greater quality swings

Preset	Encode Time 8:25 minutes	VMAF	Low-Frame
0	140:08:44	94.46	82.70
1	45:57:43	94.40	82.07
2	19:14:17	94.33	82.00
3	6:33:49	93.83	80.69
4	4:38:34	93.51	80.63
5	2:16:32	92.59	79.64
6	1:58:20	92.20	79.74
7	1:27:28	92.20	79.74
8	1:26:58	92.20	79.74
Delta	138:41:46	2.26	2.95
% Delta	98.97%	2.39%	3.57%
Delt	a - SVT-AV1	5.96%	14.79%

Which Preset? (Default =1)

<u>Analysis:</u>

- Convert time and scores to % of 100%
- Really tight range of quality
 - 97.61% is lowest quality
 - Bottom 3 are identical
- Encoding times blow up after 4
 - Between 3/4 looks like a sweet spot
- Used 4 for my comparisons



Presets - Cost Per Hour

- Cost per hour single file
 - Multiply by ~3-4 for full ladder
 - Lower resolutions will encode more quickly
- I used 4 for testing
 - Cost/hour FFmpeg -\$9.00
 - Cost/hour SVT-AV1 -\$0.44
 - Preset 7

Preset	Minutes per minute	Minutes Per hour (times 60)	Hours of encoding/per video hour	Cost per hour - c6g.2xlarge	Cost per Hour
0	999.1	59,944	999.1	\$0.272	\$271.74
1	389.6	23,373	389.6	\$0.272	\$105.96
2	137.1	8,228	137.1	\$0.272	\$37.30
3	46.8	2,807	46.8	\$0.272	\$12.72
4	33.1	1,986	33.1	\$0.272	\$9.00
5	16.2	973	16.2	\$0.272	\$4.41
6	14.1	844	14.1	\$0.272	\$3.82
7	10.4	624	10.4	\$0.272	\$2.83
8	10.3	620	10.3	\$0.272	\$2.81

Preset and Bitrate for Equivalent Quality

- Assuming deliver at certain quality level, how much do you need to increase bandwidth to maintain quality
 - Preset 8 boost bandwidth by 27.74%
 for same quality as preset 0

Encoding Preset Bitrate Time 100.00% 100.00% 0 102.19% 25.94% 104.01% 8.35% 2 3 109.49% 2.96% 116.79% 2.06% 5 122.99% 1.16% 6 125.91% 0.69% 7 127.01% 0.69% 8 127.74% 0.70% Low volume streaming

High volume streaming

• Trade-off encoding cost vs. bandwidth cost

Decision: Threads

Threads limit the number of CPUs used during encode (encoding speed/quality)

```
ffmpeg -y -i Football_10.mp4 -c:v libaom-av1 -b:v 1500K -g 60 -
keyint_min 60 -cpu-used 8 -auto-alt-ref 1 -threads 8 -pass 1 -f
matroska NUL & \
```

ffmpeg -y -i Football_10.mp4 -c:v libaom-av1 -b:v 1500K -maxrate 3000K
-g 60 -keyint_min 60 cpu -used 4 -auto-alt-ref 1 -threads 8 -pass 2
Football_1.mkv

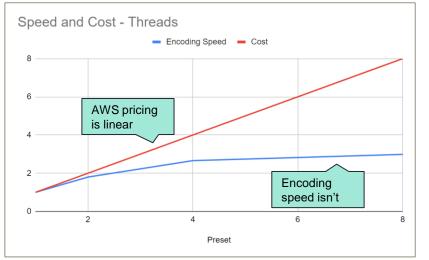
- -threads threads integer (decoding/encoding,video). Set the number of threads to be used, in case the selected codec implementation supports multi-threading. Possible values: 'auto, 0' automatically select the number of threads to set.
- **Default** value is 'auto'.

Threads

What command does: Number of logical processors to be used

Default: Auto for codec / looks to be all in this case but would be less on a system with fewer cores (test station is 40-core system)

Impact:

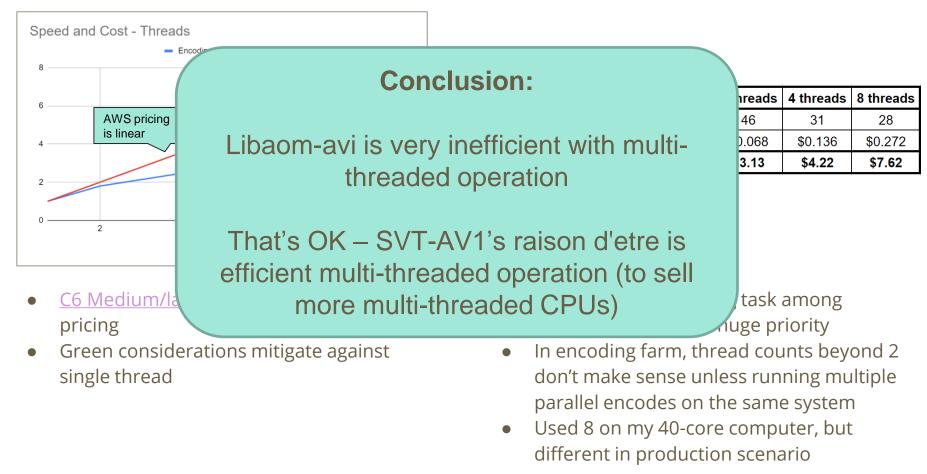

- **Encoding time -** significant reduction from 1-8; nothing thereafter
- **Quality** nothing really

Discussion: Best option depends upon:

• Cost

	Baseline	1 thread	2 threads	4 threads	8 threads	16 threads	32 threads	Delta
Freedom	0:05:14	0:16:02	0:08:43	0:05:51	0:05:18	0:05:16	0:05:09	67.88%
Football	0:03:56	0:11:11	0:06:25	0:04:23	0:03:49	0:03:45	0:03:57	66.47%
Average	0:04:35	0:13:37	0:07:34	0:05:07	0:04:34	0:04:31	0:04:33	66.87%
Bitrate	Baseline	1 thread	2 threads	4 threads	8 threads	16 threads	32 threads	Delta
Freedom	1,479	1,447	1,479	1,479	1,479	1,479	1,479	2.16%
Football	1,528	1,523	1,528	1,528	1,528	1,528	1,528	0.33%
Average	1,504	1,485	1,504	1,504	1,504	1,504	1,504	1.23%
VMAF	Baseline	1 thread	2 threads	4 threads	8 threads	16 threads	32 threads	Delta
Freedom	85.15	85.09	85.15	85.15	85.15	85.15	85.15	0.07%
Football	85.10	85.00	85.10	85.10	85.10	85.10	85.10	0.12%
Average	85.13	85.04	85.13	85.13	85.13	85.13	85.13	0.10%
Low Frame	Baseline	1 thread	2 threads	4 threads	8 threads	16 threads	32 threads	Delta
Freedom	77.58	78.57	77.58	77.58	77.58	77.58	77.58	1.25%
Football	66.41	66.21	66.41	66.41	66.41	66.41	66.41	0.30%
Average	72.00	72.39	72.00	72.00	72.00	72.00	72.00	0.54%
Standard Devia	Baseline	1 thread	2 threads	4 threads	8 threads	16 threads	32 threads	Delta
Freedom	3.23	3.25	3.23	3.23	3.23	3.23	3.23	0.65%
Football	6 74	6 77	6 74	6 74	6 74	6 74	6 74	0.41%
Average	4.99	5.01	4.99	4.99	4.99	4.99	4.99	0.49%

Threads



- <u>C6 Medium/large series</u> on-demand pricing
- Green considerations mitigate against single thread

Optimal encoding station	1 thread	2 threads	4 threads	8 threads
Time to encode 1 hour (in hours)	82	46	31	28
Hourly cost (C6g.med/large)	\$0.034	\$0.068	\$0.136	\$0.272
Total cost per hour	\$2.79	\$3.13	\$4.22	\$7.62

- Ability to split encoding task among multiple machines is huge priority
- In encoding farm, thread counts beyond 2 don't make sense unless running multiple parallel encodes on the same system
- Used 8 on my 40-core computer, but different in production scenario

Threads

Final Strings

Entries in green are default values;

```
ffmpeg -y -i Football_10.mp4 -c:v libaom-av1 -b:v 1500K -g 60 -keyint_min 60
-cpu-used 8 -auto-alt-ref 1 -threads 8 -tile-columns 1 -tile-rows 0 -row-mt
1 -lag-in-frames 25 -pass 1 -f matroska NUL & \
```

ffmpeg -y -i Football_10.mp4 -c:v libaom-av1 -b:v 1500K -maxrate 3000K -g
60 -keyint_min 60 -cpu-used 3 -auto-alt-ref 1 -threads 8 -tile-columns 1 tile-rows 0 -row-mt 1 -lag-in-frames 25 -pass 2 Football 1.mkv

Observations About libaom-AV1

- Regarding the future of libaom-AV1, Andrey explained that though both Libaom-AV1 and SVT-AV1 will be supported going forward, they serve different functions.
- Specifically, Libaom-AV1 is "the reference software" designed to "cover the whole AV1 standard."
- SVT-AV1 "is more of a production code base or the code base that is optimized to work ... multi core machines."

Netflix's Andrey Norkin Talks Future of AV1

https://bit.ly/Norkin_AV1

- Libaom is more accessible (because it's in FFmpeg), but less functional
- SVT-AV1 has its warts as well

SVT-AV1

- Overview
- Encoding basics
 - Encoding string starting point
 - Passes
 - Presets
 - \circ Threads

Overview

- The SVT-AV1 encoder was developed by Netflix and Intel and <u>launched</u> at NAB 2019
- The codec is available on Github <u>here</u> (**https://bit.ly/get_svt**)
- You can find the user guide <u>here</u> (https://bit.ly/learn_SVT)
 - and you should definitely download and print a copy if you plan to work with SVT-AV1. Unfortunately, there's not a lot of guidance there
- In August 2020, the Alliance for Open Media <u>announced</u> that they were forming a working group to "aid the development of AOMedia AV1 products and services." The group will use SVT-AV1 as the basis for these efforts
- <u>Here's</u> the help file from the latest version of the encoder (https://bit.ly/svt_help)
- The SVT-AV1 encoder is SvtAv1EncApp.exe

Encoding Basics

Convert source file to Y4M (the encoder only accepts Y4M or YUV input)

ffmpeg -i input.mp4 -pix_fmt yuv420p input.y4m

Multiple-pass string from documentation (<u>https://bit.ly/svt_docs</u>)

SvtAv1EncApp -i input.y4m -w 1920 -h 1080 --fps 24 --rc 1 --tbr 1000 --preset 0 --passes 2 --stats stat_file.stat -b output.ivf

Items in red not needed if use Y4m and don't need stat file

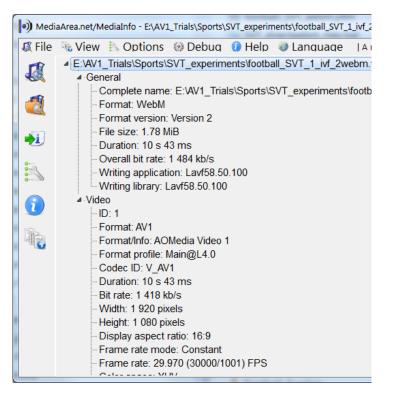
Encoding Basics

My starting string

```
SvtAvlEncApp -i input.y4m --rc 1 --tbr 1500 --mbr 3000 --keyint 2s --preset 4 -
-passes 2 -b output.ivf
```

- -i = input file (I prefer Y4m over YUV because you can eliminate -w/-h/-fps)
- --rc = Rate control mode (0 = CQP, 1 = VBR, 2 = CBR)
- --tbr = target bitrate
- --mbr = max bitrate
- --preset = Preset (more later, default is 10)
- --passes 2 = Number of passes (2=3 passes but very, very fast quick)
- --keyint 2s = sets keyframe at 2 seconds
- -b = Output file

Output Format - IVF, MKV, WebM


- .ivf is default output
- .ivf is a funky file format.
 - Windows doesn't know 0 what player to assign
 - MediaInfo knows but \bigcirc provides limited information

	Windows				
	Windows can't open this file:				
	File: football_SVT_1.ivf				
	To open this file, Windows needs to know what program you want to use to open it. Windows can go online to look it up automatically, or you can manually select from a list of programs that are installed on your computer.				
	What do you want to do?				
	Use the Web service to find the correct program				
	Select a program from a list of installed programs				
	OK Cancel				
 Medi 	iaArea.net/MediaInfo - E\AV1_Trials\Sports\SVT_experiments\football_SVT_1.ivf				
₿ <u>F</u>ile	🕆 View 🖹 Options 🥘 Debug 🚺 Help 🥥 Language 🛛 🛔 new version is available				
1	E:\AV1_Trials\Sports\SVT_experiments\football_SVT_1.ivf General				
	- Complete name: E:\AV1_Trials\Sports\SVT_experiments\football_SVT_1.ivf - Format: IVF				
	− File size: 1.78 MiB I Video				
1	-Format: AV1				
0 0-20	– Format/Info: AOMedia Video 1 – Codec ID: AV01				
3	- Godec ID. AVVI - Width: 1 920 pixels				
6	Height: 1 080 pixels				
	- Display aspect ratio: 16:9				

- Frame rate: 29.970 (30000/1001) FPS - Stream size: 1.78 MiB (100%)

Output Format - IVF, MKV, WebM

- During experimentation phase
 - Output as .ivf
 - Convert in FFmpeg to web/mkv
- File read by any AV1 compatible player and analysis tool

ffmpeg -i input.ivf -vcodec copy -acodec copy output.webm

One or Three Passes

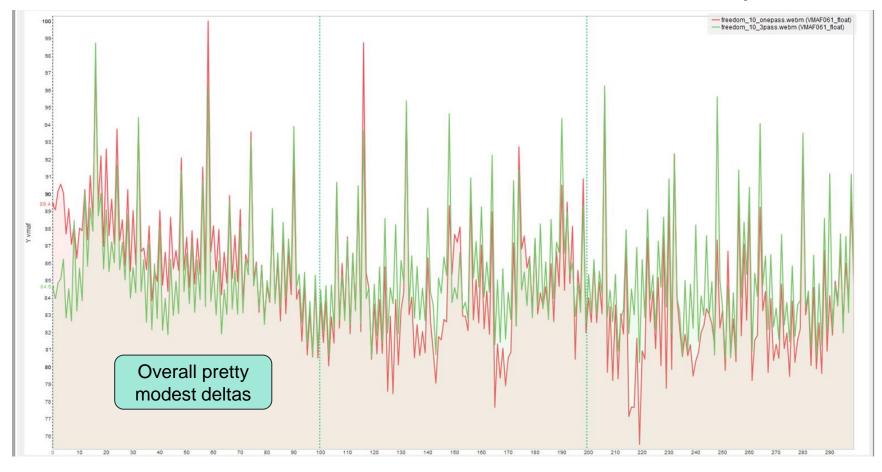
<u>1-Pass</u>

SvtAv1EncApp -i input.y4m --rc 1 --tbr 1500 --mbr 3000 --keyint 2s --preset 4 -b output.ivf

2-pass/3-Pass

SvtAv1EncApp -i input.y4m --rc 1 --tbr 1500 --mbr 3000 --keyint 2s --preset 4 --passes 2 -b output.ivf

Decision 1: One Pass or Three-Pass


Feature Analysis:

- Time:
 - One-pass is 7% faster
- Bitrate:
 - 3-pass does a better job achieving target bitrate (lower delta from 1500 target)
- VMAF average 2.5 higher (mostly easyhard)
- Low-frame (transient issues)
 - 3-pass is meaningfully lower on all clips, particularly easyhard.
- Standard deviation (quality variability)
 - 1-pass substantially higher

Single/Three Pass				
Encoding time	1-pass	3-pass	Delta	
Freedom	0:01:13	0:01:19	7.59%	
Football	0:01:25	0:01:31	6.59%	
Easy Hard	0:02:55	0:03:08	6.91%	
Average	0:01:51	0:01:59	6.98%	
bitrate	1-pass	3-pass	Delta	
Freedom	1,448	1,438	0.69%	
Football	1,413	1,398	1.06%	
Easy Hard	1,348	1,456	7.42%	
Average	1,403	1,431	1.93%	
Delta from 1500	-6.47%	-4.62%		
VMAF	1-pass	3-pass	Delta	
Freedom	84.59	85.18	0.70%	
Football	82.90	81.08	2.20%	
Easy Hard	69.79	78.32	10.90%	
Average	79.09	81.53	2.99%	
Low Frame	1-pass	3-pass	Delta	
Freedom	75.53	80.26	5.90%	
Football	64.40	67.32	4.34%	
Easy Hard	33.94	55.05	38.35%	
Average	57.96	67.55	14.20%	
Standard Deviation	1-pass	3-pass	Delta	
Freedom	3.83	3.29	14.26%	
Football	6.36	5.53	13.17%	
Easy Hard	17.84	11.05	38.05%	
Average	9.35	6.62	29.15%	

Results Plots and Frames - Freedom

Red = 1-Pass Green = 3-pass

Results Plots and Frames - Football

Red = 1-Pass Green = 3-pass

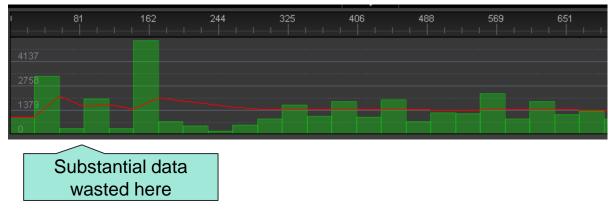
Source

E:\archives\AV1_Trials\SVTNew\1_baseline\Football_10.mp4

Non and a second and a second VMAF061_float 1-st proc 64.395775 VMAF061_float 2-nd proc 91.670822 2h

1920x1080

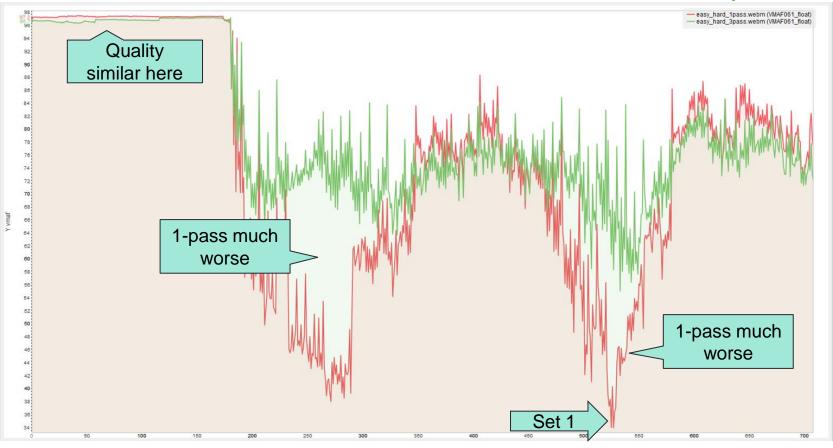
E:\archives\AV1_Trials\SVTNew\1_baseline\football_10_onepass.webm



3-Pass

Data Rate Allocation – Easy Hard Clips

- Classic 1-pass vs. multiplepass
- 1-pass don't know where difficult sections are
- Multiple-pass
 - Scan once, ID easy and hard regions
 - \circ Then encode


1-Pass

<u>3-Pass</u>

Results Plots and Frames - Easy_Hard

Red = 1-Pass Green = 3-pass

1920×1080 🕕

Decision 1: One Pass or Three-Pass

Feature Analysis:

- Time:
 - One-pass is 7% higher
- Bitrate:
 - 3-pass does a better job achieving target bitrate (lower delta from 1500 target)
- VMAF average 2.5 higher (mostly easyhard)
- Low-frame (transient issues)
 - 3-pass is meaningfully lower on all clips, particularly easyhard.
- Standard deviation (quality variability)
 - 1-pass substantially higher
- Conclusion: 3-Pass where available (not live)

Single/Three Pass					
Encoding time	1-pass	3-pass	Delta		
Freedom	0:01:13	0:01:19	7.59%		
Football	0:01:25	0:01:31	6.59%		
Easy Hard	0:02:55	0:03:08	6.91%		
Average	0:01:51	0:01:59	6.98%		
bitrate	1-pass	3-pass	Delta		
Freedom	1,448	1,438	0.69%		
Football	1,413	1,398	1.06%		
Easy Hard	1,348	1,456	7.42%		
Average	1,403	1,431	1.93%		
Delta from 1500	-6.47%	-4.62%			
VMAF	1-pass	3-pass	Delta		
Freedom	84.59	85.18	0.70%		
Football	82.90	81.08	2.20%		
Easy Hard	69.79	78.32	10.90%		
Average	79.09	81.53	2.99%		
Low Frame	1-pass	3-pass	Delta		
Freedom	75.53	80.26	5.90%		
Football	64.40	67.32	4.34%		
Easy Hard	33.94	55.05	38.35%		
Average	57.96	67.55	14.20%		
Standard Deviation	1-pass	3-pass	Delta		
Freedom	3.83	3.29	14.26%		
Football	6.36	5.53	13.17%		
Easy Hard	17.84	11.05	38.05%		
Average	9.35	6.62	29.15%		

SVT-AV1 in FFmpeg

- You can access SVT-AV1 in FFmpeg (if you compile a special version)
- Only single-pass is supported

Key Performance/Quality-Related Parameters

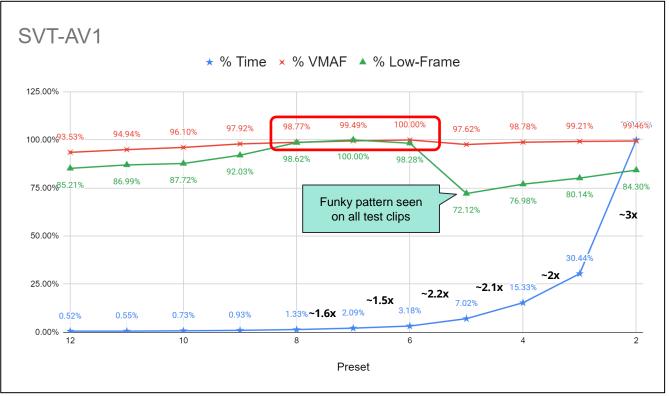
aomenc Command	Function	STV Equivalent	Default?
cpu-used=	Encoding/quality tradeoff	preset	8
threads=	Set number of threads used	lp (logical processors)	Not specified (seems like all available cores)
tile-columns=1 tile-rows=0	Divides frame into sections for faster encoding	same	Not deployed
auto-alt-ref=1	Enable automatic alt reference frames	enable tf	On by default
row-mt=	Enable row based multi-threading	None	NA
lag-in-frames=			"When Rate Control is set to 1 (VBR) it's best to set this parameter to be equal to the Intra period value"

Choosing a Preset

- Preset controls quality/encoding time tradeoff
- Encoding parameters (results will change if use different)
 - Two-pass (significant difference)
 - LP 8 (makes a significant difference see why later)
 - VBR
 - 2-second keyframe
- Test files will also make a difference
- Run your own tests to be sure for your settings and clips

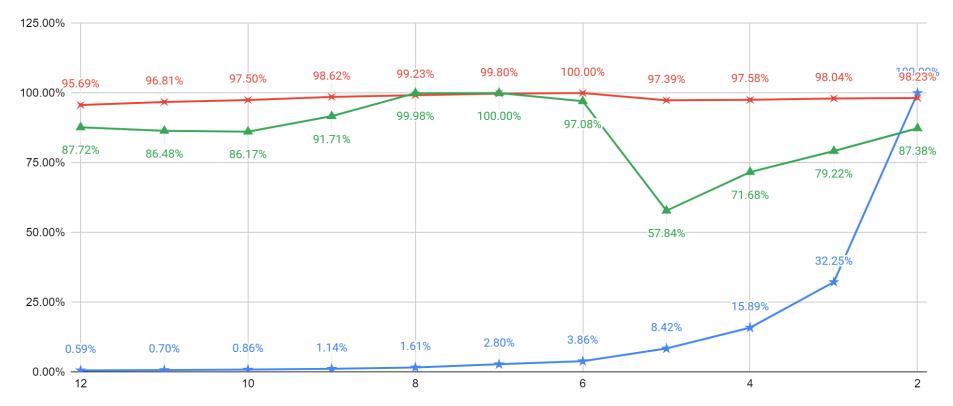
```
SvtAvlEncApp -i input.y4m --rc 1 --tbr 1500 --mbr 3000 --keyint 2s --passes 2 --preset 1 --passes 2 -b input.ivf
```

Presets


- Combined for all three test files (total ~ 8.5 min)
- Max delta
 - **5.96% for VMAF**
 - 24.79% for Low-Frame
- Single file live (origination) possible at around 8 or lower
 - Minimal quality drop

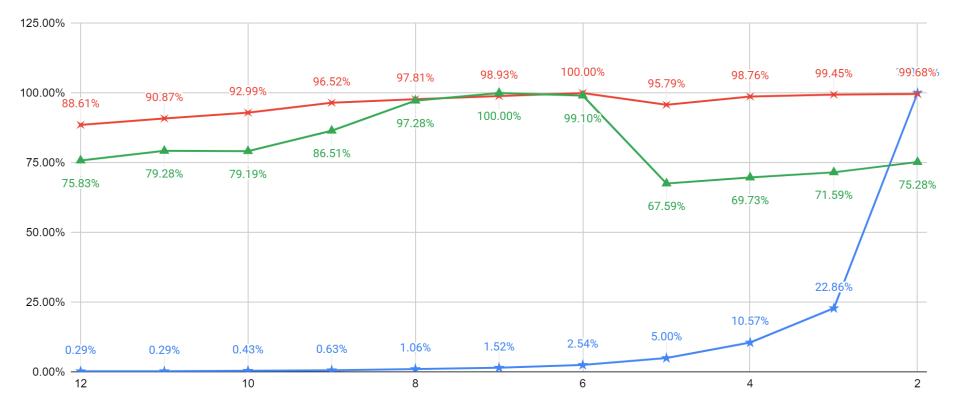
Preset	Combined Time	VMAF	Low-Frame
2	10:56:02	92.63	70.76
3	3:19:40	92.40	67.27
4	1:40:34	92.00	64.61
5	0:46:03	90.92	60.53
6	0:20:53	93.14	82.49
7	0:13:44	92.67	83.94
8	0:08:45	92.00	82.78
9	0:06:08	91.20	77.24
10	0:04:48	89.51	73.63
11	0:03:35	88.43	73.02
12	0:03:26	87.11	71.52
Delta	10:52:36	5.56	12.42
% Delta	99.48%	5.96%	14.79%

Presets – Default is 10


Analysis:

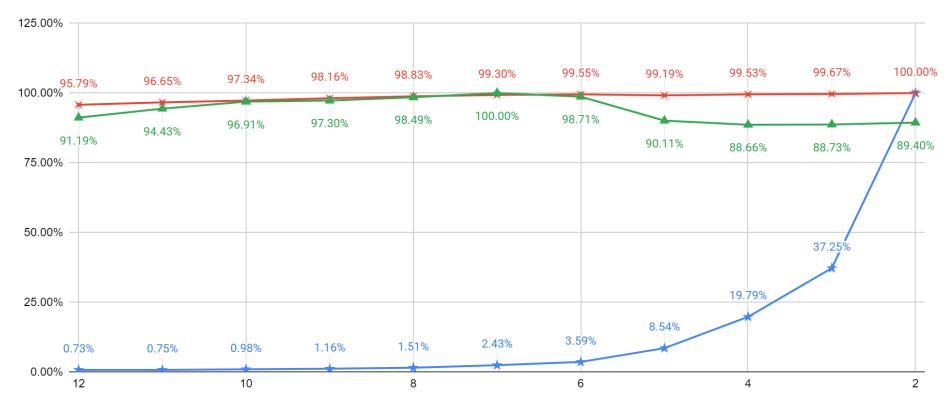
- Convert time and scores to % of 100%
- Funky pattern, very much influenced by Football clip
- On average, 7 appears the best choice
 - 32% lower encoding time than 6
 - .5 VMAF
 - Best low frame

Orchestra


★ % Time 🗙 % VMAF 🔺 % Low-Frame

Preset

Football


★ % Time 🗙 % VMAF 🔺 % Low-Frame

Preset

Freedom

★ % Time 🗙 % VMAF 🔺 % Low-Frame

Preset

Presets - Cost Per Hour

- Cost per hour single file
 - Multiply by ~3-4 for full ladder
 - Lower resolutions will encode more quickly
- 7 seems like optimal choice
 - \$0.44 per hour
 - Compared to \$9.00 for libaom
- I used 7 for testing

Preset	minutes per minute	Minutes Per hour (times 60)	Hours to encode video hour	Cost per hour - c6g.2xlarge	Cost per Hour
2	78.39	4,703	78.4	\$0.272	\$21.32
3	23.49	1,409	23.5	\$0.272	\$6.39
4	11.83	710	11.8	\$0.272	\$3.22
5	5.42	325	5.4	\$0.272	\$1.47
6	2.46	148	2.5	\$0.272	\$0.67
7	1.62	97	1.6	\$0.272	\$0.44
8	1.03	62	1.0	\$0.272	\$0.28
9	0.72	43	0.7	\$0.272	\$0.20
10	0.56	34	0.6	\$0.272	\$0.15
11	0.42	25	0.4	\$0.272	\$0.12
12	0.35	21	0.4	\$0.272	\$0.10

Something is Flawed Here

- Either my test clips
- My analysis, or
- SVT-AV1 preset selection
- Run a similar analysis before choosing an SVT-AV1 preset

Number of Threads

Threads limit the number of CPUs used during encode (encoding speed/quality)

SvtAv1EncApp -i input.y4m --rc 1 --tbr 1500 --mbr 3000 -keyint 2s --preset 4 --passes 2 --lp 8 -b output.ivf

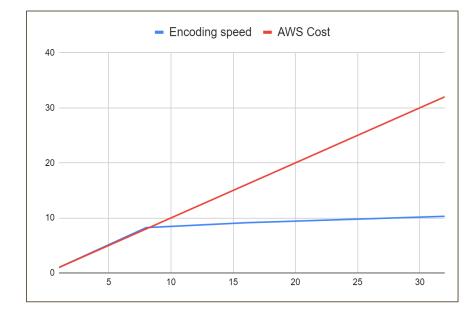
 --lp = Target (best effort) number of logical cores to be used. 0 means all. Refer to Appendix A.1 of the user guide, default is 0 [0, core count of the machine] (from <u>help</u> file)

Decision: Number of Threads

Impact:

- Encoding time adding threads decreases encoding time significantly (after 1)
- Very minor quality impact

Discussion: Best option depends upon:


• Cost and density

	Baseline	1 thread	8 threads	16 threads	32 threads	Delta
Freedom	0:01:23	0:14:27	0:01:41	0:01:32	0:01:24	90.43%
Football	0:01:11	0:12:19	0:01:34	0:01:24	0:01:12	90.39%
Average	0:01:17	0:13:23	0:01:38	0:01:28	0:01:18	90.41%
Bitrate	Baseline	1 thread	8 threads	16 threads	32 threads	Delta
Freedom	1,440	1,436	1,446	1,437	1,438	0.69%
Football	1,398	1,389	1,380	1,398	1,397	1.29%
Average	1,419	1,413	1,413	1,418	1,418	0.46%
VMAF	Baseline	1 thread	8 threads	16 threads	32 threads	Delta
Freedom	85.17	85.13	85.23	85.14	85.20	0.11%
Football	81.06	81.47	80.96	81.21	81.09	0.64%
Average	83.11	83.30	83.09	83.18	83.14	0.25%
Low Frame	Baseline	1 thread	8 threads	16 threads	32 threads	Delta
Freedom	80.20	80.46	80.51	80.46	80.35	0.38%
Football	67.26	65.12	65.32	65.75	67.39	3.37%
Average	73.73	72.79	72.92	73.11	73.87	1.46%
Standard Deviation	Baseline	1 thread	8 threads	16 threads	32 threads	Delta
Freedom	3.29	3.26	3.25	3.26	3.24	1.39%
Football	5.53	5.77	5.78	5.61	5.49	4.98%
Average	4.41	4.51	4.51	4.44	4.36	3.33%

Threads

	1 thread	8 threads	16 threads	32 threads
Time to encode 1 hour (in hours)	81	10	9	8
Hourly cost	0.034	0.272	0.544	1.088
Total cost per hour	\$2.75	\$2.72	\$4.90	\$8.70

- <u>C6 Medium/large series</u> on-demand pricing
- Encoding speed tracks pricing through 8 threads
 - After that, it's diminishing returns

• 8 is probably sweet spot for most cloud producers

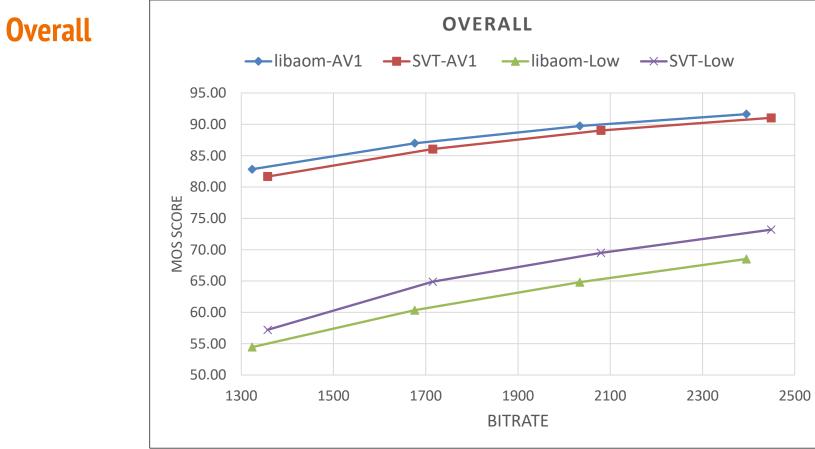
Final Command String

SvtAvlEncApp -i input.y4m --rc 1 --tbr 1500 --mbr 3000 --keyint 2s --preset 4 --passes 2 --lp 8 --tile-columns 0 --tile-rows 0 -enable-tf 1 -b output.ivf

Compare SVT-AV1/Libaom-AV1

<u>Libaom-AV1</u>

Preset	Encode Time 8:25 minutes	VMAF	Low-Frame
0	140:08:44	94.46	82.70
1	45:57:43	94.40	82.07
2	19:14:17	94.33	82.00
3	6:33:49	93.83	80.69
4	4:38:34	93.51	80.63
5	2:16:32	92.59	79.64
6	1:58:20	92.20	79.74
7	1:27:28	92.20	79.74
8	1:26:58	92.20	79.74
Delta	138:41:46	2.26	2.95
% Delta	98.97%	2.39%	3.57%


<u>SVT-AV1</u>

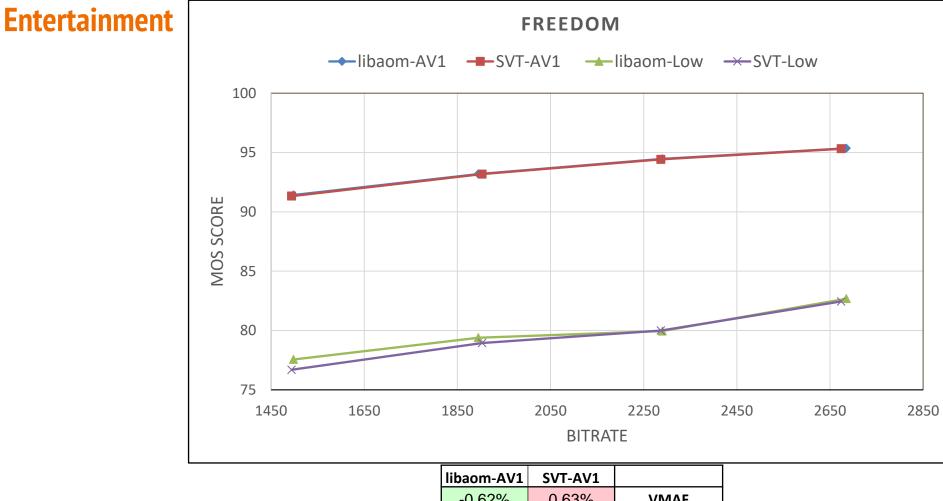
Preset	Time (10 seconds)	VMAF	Low-Frame
2	10:56:02	92.63	70.76
3	3:19:40	92.40	67.27
4	1:40:34	92.00	64.61
5	0:46:03	90.92	60.53
6	0:20:53	93.14	82.49
7	0:13:44	92.67	83.94
8	0:08:45	92.00	82.78
9	0:06:08	91.20	77.24
10	0:04:48	89.51	73.63
11	0:03:35	88.43	73.02
12	0:03:26	87.11	71.52
Delta	10:52:36	5.56	12.42
% Delta	99.48%	5.96%	14.79%

- Not really apples-to-apples
 - SVT-AV1 about 32x faster
 - Much, much cheaper
- But using recommended presets for each codec

Test

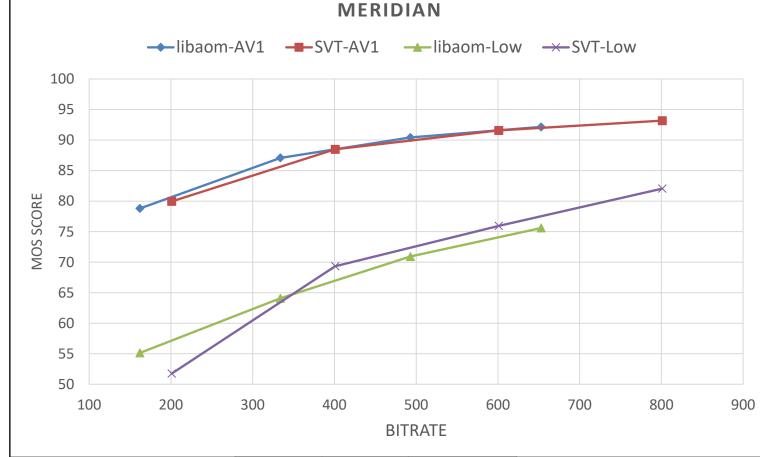
- Entertainment
 - Freedom, Meridian, orchestra, TOS, TOS CG, Zoolander
- Animations
 - BBB, Sintel, El Ultimo
- Sports
 - Football, soccer, hockey
- Games
 - EuroTruckSimulator2, GTAV, Minecraft
- Other
 - Animals, carlot

	SVT-AV1	libaom-AV1	
VMAF	8.32%	-7.68%	
Low-Frame	-13.81%	16.03%	

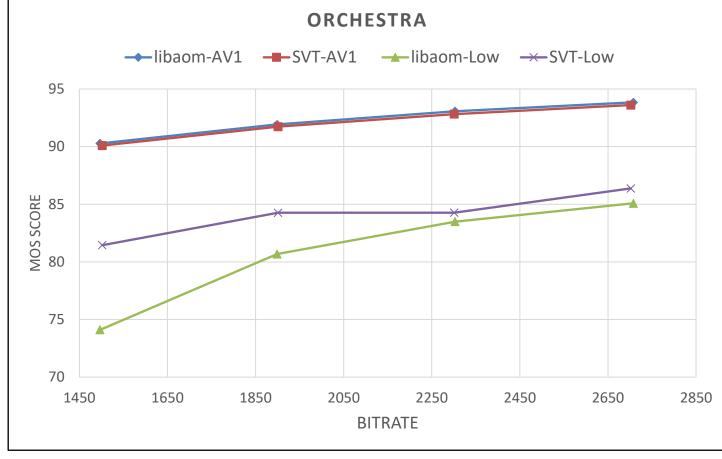

Analysis

- Quality (mixed)
- Libaom-av1 slightly better overall
- Libaom-av1 worse for low frame
- Performance (all SVT)
 - SVT-AV1 much faster but presets are wacky
 - This will likely change over next few releases
 - Higher quality options should be available

- Accessibility (libaom)
- SVT-AV1 is accessible in FFmpeg currently but single-pass only
- Should but multiple-pass within FFmpeg soon
- Trending (SVT
 - SVT-AV1 trending towards greater utility
 - Libaom trending towards
 becoming the reference codec
 - Best overall quality, but limited utility

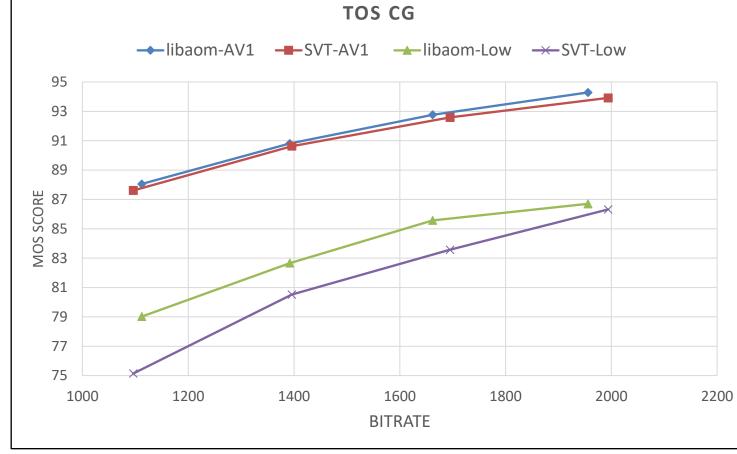

Magic Ball Says

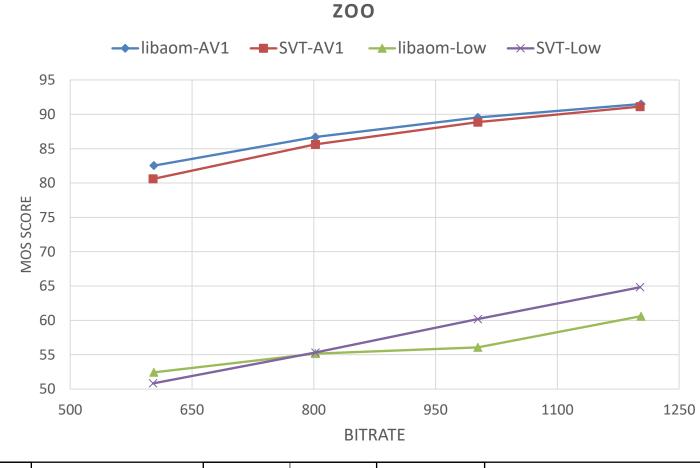
Start Migrating to SVT-AV1



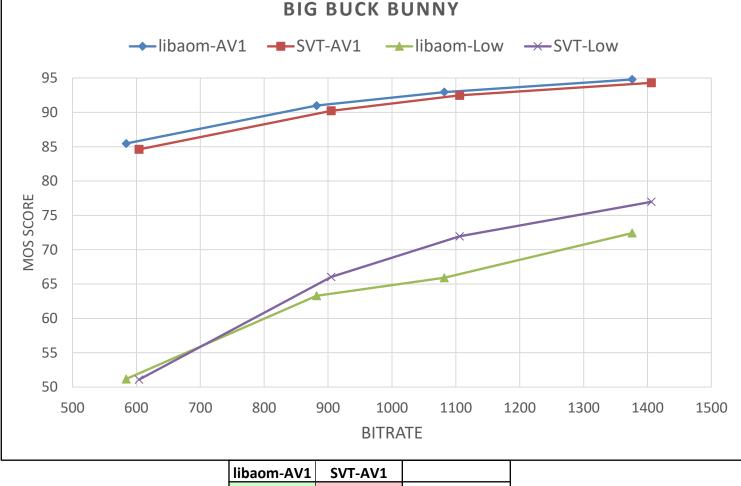
-0.62%	0.63%	VMAF
-3.56%	3.70%	Low-Frame

Entertainment

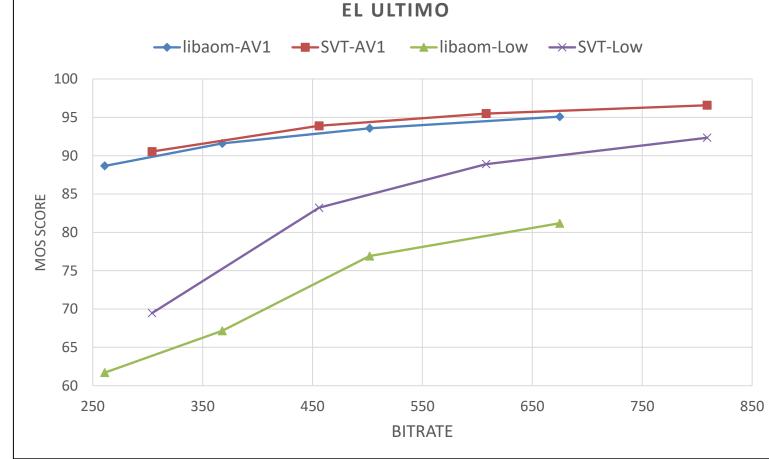

	SVT-AV1	libaom-AV1	
VMAF	5.62%	-5.32%	
Low-Frame	-2.04%	2.09%	


	SVT-AV1	libaom-AV1
VMAF	3.73%	-3.59%
Low-Frame	-22.80%	29.54%

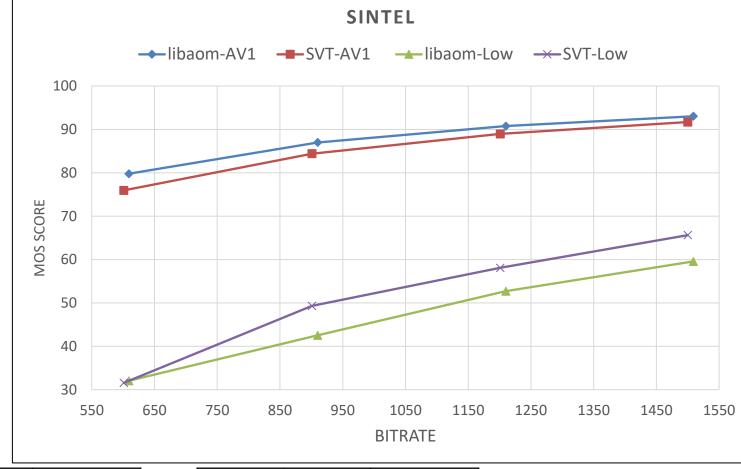
	SVT-AV1	libaom-AV1
VMAF	7.17%	-6.69%
Low-Frame	-10.12%	11.26%



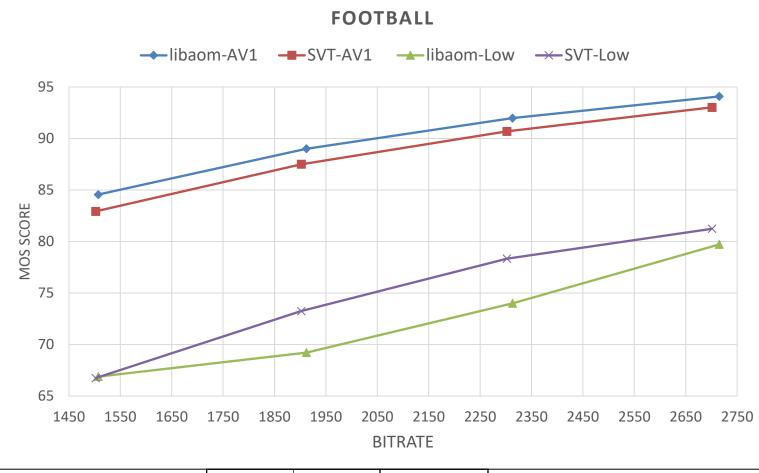
libaom-AV1	SVT-AV1	
-2.63%	2.70%	VMAF
-12.99%	14.93%	Low-Frame


libaom-AV1	SVT-AV1	Entertainment	libaom-AV1	SVT-AV1	
-4.27%	4.51%	VMAF	-6.74%	7.22%	VMAF
6.02%	-4.21%	Low-Frame	9.81%	-8.94%	Low-Frame

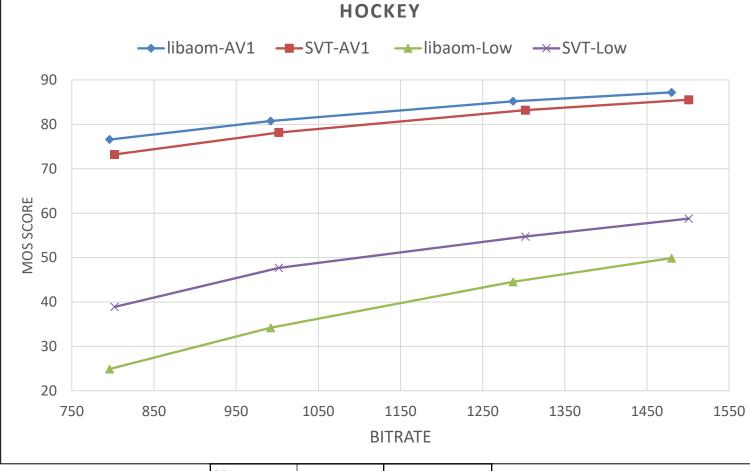
Animations


-8.60%	9.41%	VMAF
6.49%	-6.10%	Low-Frame

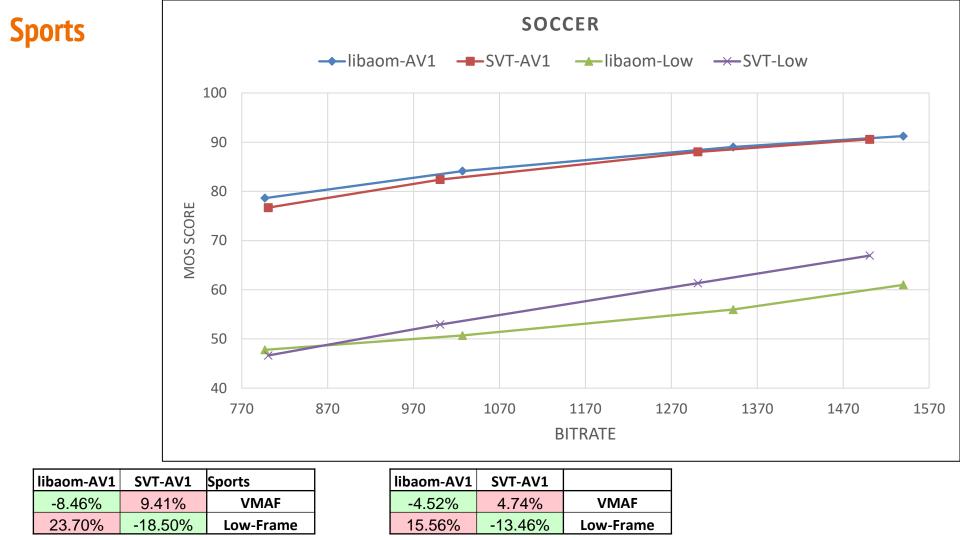
Animations

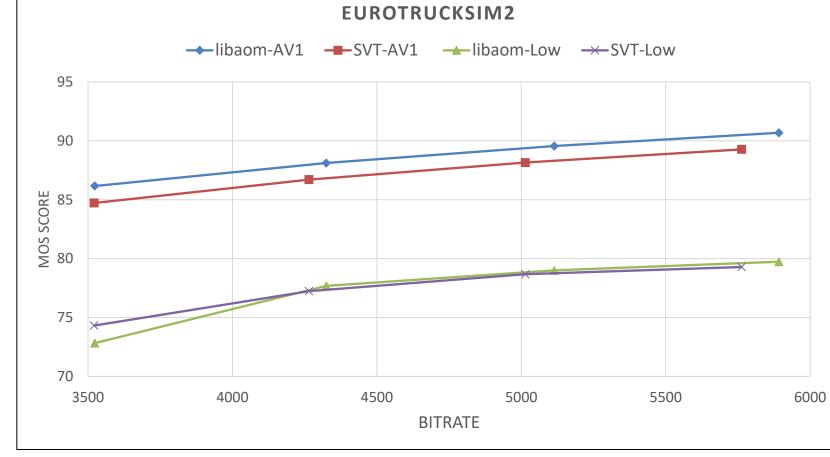

	SVT-AV1	libaom-AV1
VMAF	-11.57%	13.08%
Low-Frame	-28.15%	39.18%

Animations


libaom-AV1	SVT-AV1	Animation	libaom-AV1	SVT-AV1	
-3.05%	4.54%	VMAF	-13.62%	15.77%	VMAF
21.08%	-16.39%	Low-Frame	17.55%	-14.93%	Low-Frame

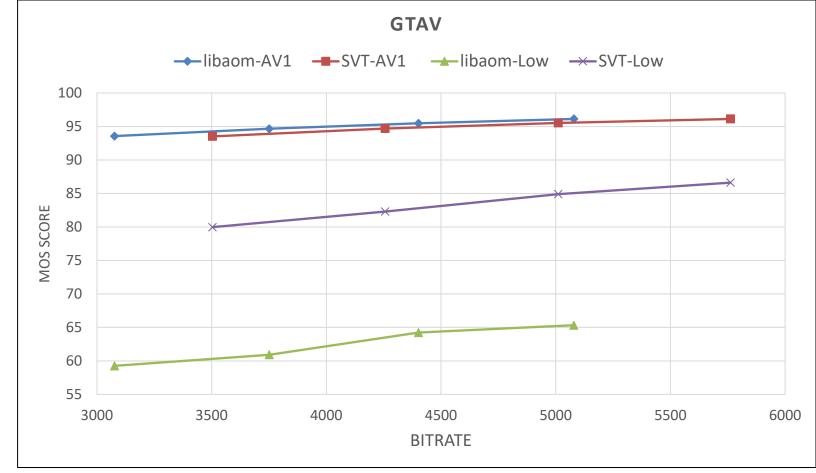
Sports



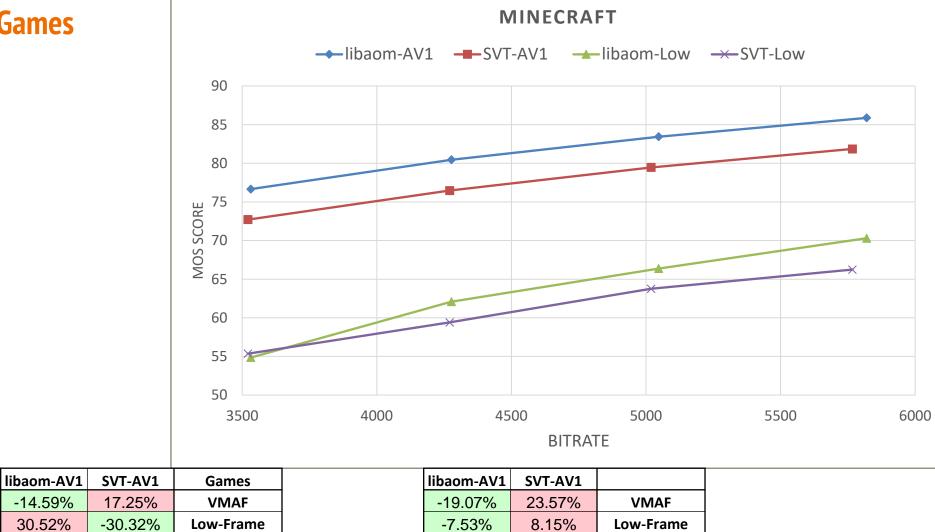

	SVT-AV1	libaom-AV1	
VMAF	8.41%	-7.76%	
Low-Frame	-13.53%	15.64%	

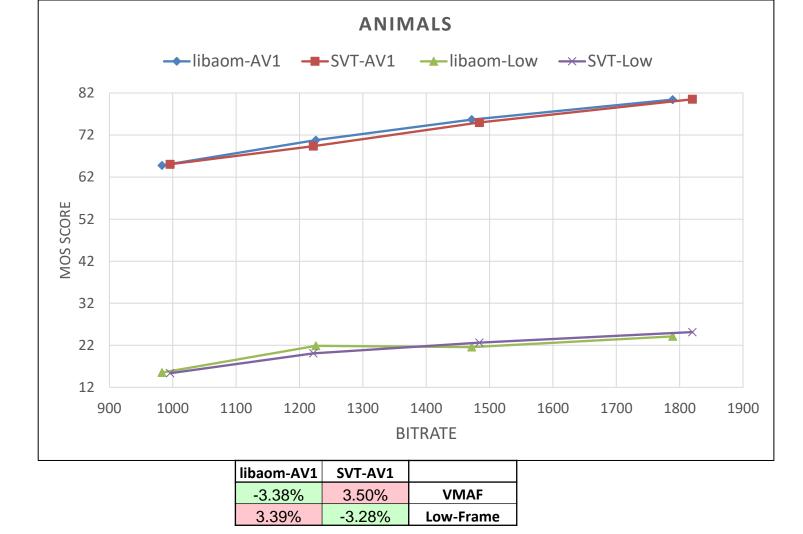
Sports

	SVT-AV1	libaom-AV1
VMAF	15.09%	-13.11%
Low-Frame	-28.52%	39.91%

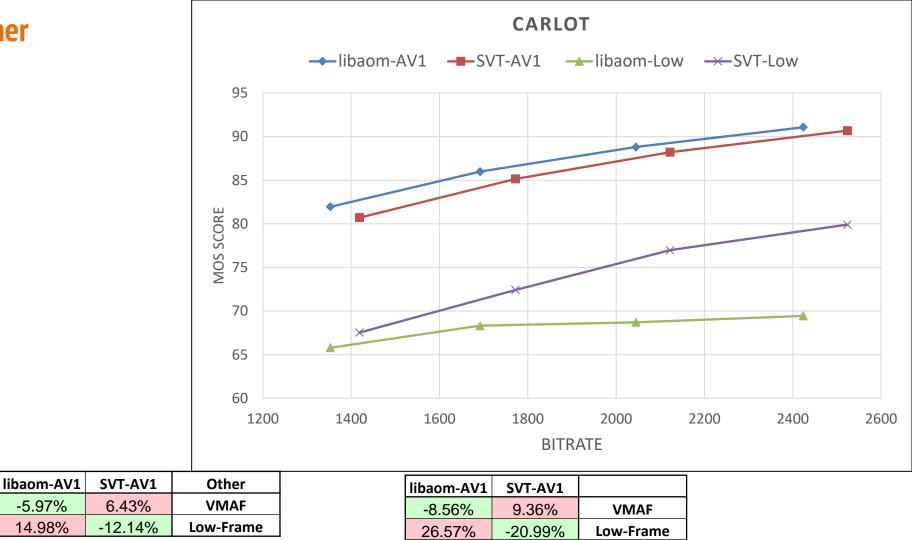


Games


	SVT-AV1	libaom-AV1
VMAF	15.25%	-13.23%
Low-Frame	0.90%	-0.90%



	SVT-AV1	libaom-AV1
VMAF	12.93%	-11.45%
Low-Frame	-100.00%	100.00%


Games

Other

Other

