CREATE CONNECT LIVE inspire

Versatile Video Coding (VVC) Going Beyond HEVC

R&I Core Video Coding team

© 2023 InterDigital, Inc. All Rights Reserved.

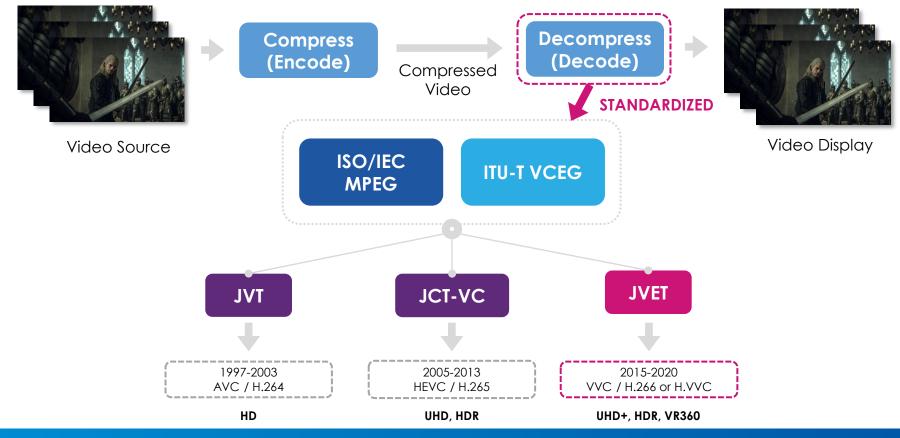
- VVC Architecture and New Tools
- <u>Performance</u>
- <u>Deployment Status</u>
- <u>VVC For Streaming</u>

What is VVC?

- VVC is a Hybrid Video Coding based on HEVC
 - Refined existing techniques
 - Added novel coding tools

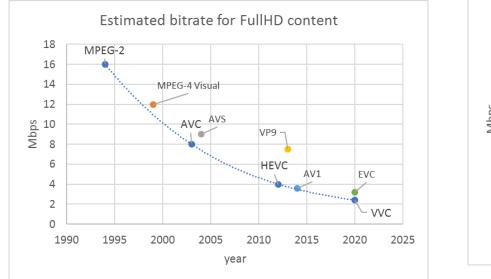
Coding Efficiency

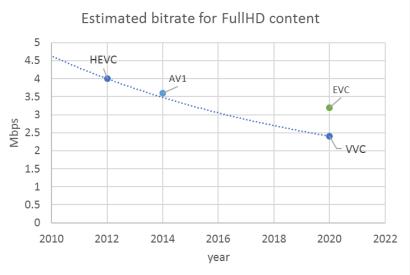
35% objective (PSNR) over HEVC 40+% subjective over HEVC HD/UHD/8K resolutions 10-12 bit depth


Versatility

Camera generated content HDR/WCG

Computer generated content 360° VR video

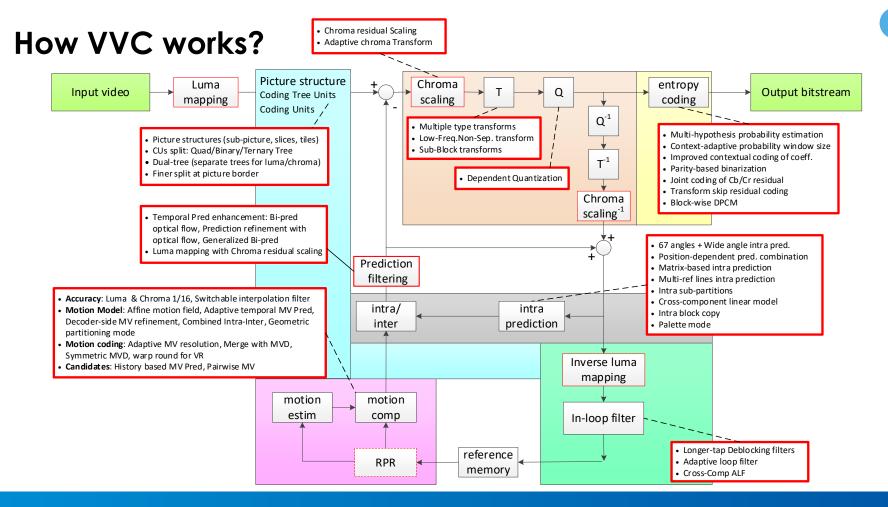



Versatile Video Coding (VVC): How Did We Get Here?

© 2019 InterDigital, Inc. All Rights Reserved.

Compression Progress, MPEG-2 to VVC

inspired from Karwowski et al 2017, 20 Years of Progress in Video Compression – from MPEG-1 to MPEG-H HEVC. General View on the Path of Video Coding Development, ICIP2017



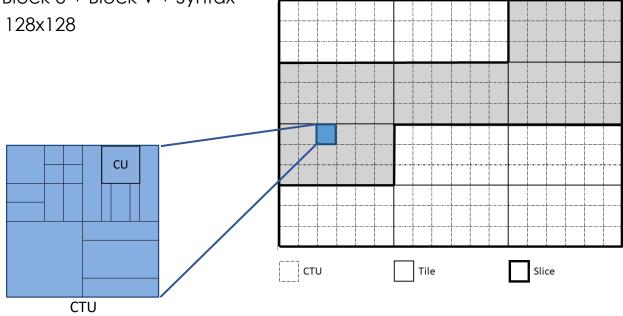
<u>VVC Architecture and New Tools</u>

• <u>Performance</u>

- <u>Deployment Status</u>
- <u>VVC For Streaming</u>

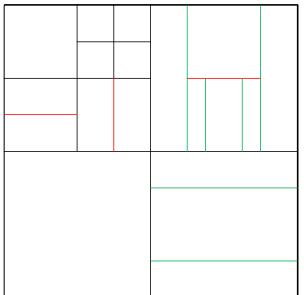
	Main new elements compared to HEVC	
Partitioning	 Coding units splitting: Binary Tree + Ternary Tree Dual-tree (separate trees for luma/chroma) Finer split at picture border Picture structures (sub-pictures, slices, tiles) 	ID
Transform	 Multiple type transforms Low-frequency non-separable transform Sub-block Transforms 	
Quantization	Dependent quantization	
Residual Coding	 Improved contextual coding of transform coefficients Parity-based binarization for dependent quantization Transform skip residual coding Joint coding of chroma residual 	
Entropy Coding	 Multi-hypothesis probability estimation Context-adaptive probability window size 	
Intra Prediction	 67 angles and wide angle intra prediction Position-dependent prediction combination Matrix-based intra prediction Multi-reference lines intra prediction Intra sub-partitions Cross-component linear model 	
Inter Prediction	 Affine motion field, combined intra-inter, decoder-side MV refinement and adaptive temporal MV prediction, geometric partitioning mode Motion coding for adaptive MV resolution, MVD, and symmetric MVD, warp round for VR Candidates include history based MV prediction, pairwise MV and sub-block based temporal motion prediction Accuracy: Luma & Chroma 1/16; and switchable interpolation filter is applied 	
Prediction Filtering	 Temporal prediction enhancement include bi-directional optical flow, prediction refinement with optical flow, and bi-prediction with coded weights Luma mapping with Chroma residual scaling 	5
Loop Filters	 Adaptive loop filter Cross-component adaptive loop filter Longer-tap deblocking filters 	
SCC & Others	 Intra block copy Palette mode Adaptive chroma transform Adaptive resolution coding 	

ID


Picture Partitioning

• Partition of a picture into subpictures, slices, tiles and CTUs

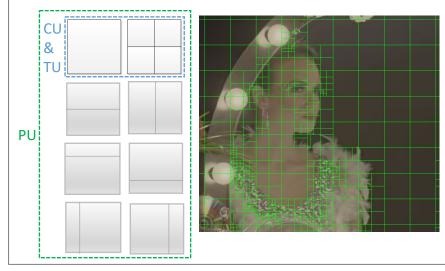
• CTU: Coding Tree Unit



• CTU size is up to 128x128

Block Partitioning

- A CTU is split into CUs using the coding tree
- 1st tree
 - Quad split
- 2nd tree
 - Quad split
 Binary split
 - Tenary split
- CU can be square or rectangular


- Support Dual-Tree in I-slices
 - Separated coding trees for Luma and Chroma

Highly flexible partitioning

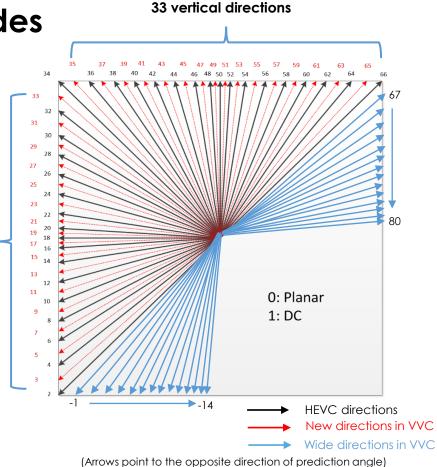
HEVC

- CTU 64x64
- CU & TU Partitioning: No Split/Quad-Tree
- PU Partitioning: No Split / Quad-Tree / Binary-T / Asymmetric

VVC

- CTU 128x128
- CU Partitioning: No Split / Quad-Tree / Binary-T / Ternary-T
- Most cases: a CU is no more divided into PU or TU

ID


Intra Prediction-angular modes

65 angular modes

 33 directions in HEVC + 32 new intermedia directions

28 wide angular modes

- rectangular only
- some regular modes are replaced by equal number of wide angular modes

INTERDIGITAL

32 horizontal directions

Metadata for VVC - VSEI

Versatile Supplemental Enhancement Information

- VVC standard only defines processes required for conforming video decoders.
- Information about how video is intended to be postprocessed, displayed, or otherwise used is specified mostly in the VSEI standard.
- VUI parameters provide information for the correct display of coded video: scanning format, transfer function, colour gamut, aspect ratio, etc.
- SEI messages provide additional information that can assist decoders, displays, and other video receivers perform as desired by the content producer.
- Several SEI messages such as MDVC, CLLI or ATC were developed for deployment of HDR video serivces.

Film grain synthesis

- Film grain synthesis (FGS) characteristics SEI message is increasingly important due to interest in film grain synthesis in high-value streaming services.
- FGS characteristics SEI message supported in AVC, HEVC and VVC
- A Technical Report on use of film grain technologies is currently in development in ITU-T and ISO/IEC.
- 2 main FGS use cases: preserving artistic intent and masking compression artefacts.

Neural-network post filter

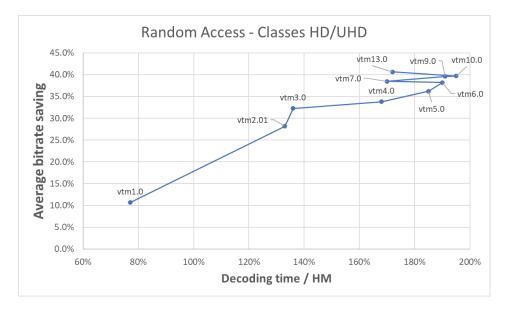
- NNPF SEI messages enable use of neural networks for post-processing operations (e.g, super-resolution, frame rate upsampling)
- NNPFC SEI message signals NN weights.
- NNFPA SEI message signals a specific NN that is invoked.

<u>VVC Architecture and New Tools</u>

Performance

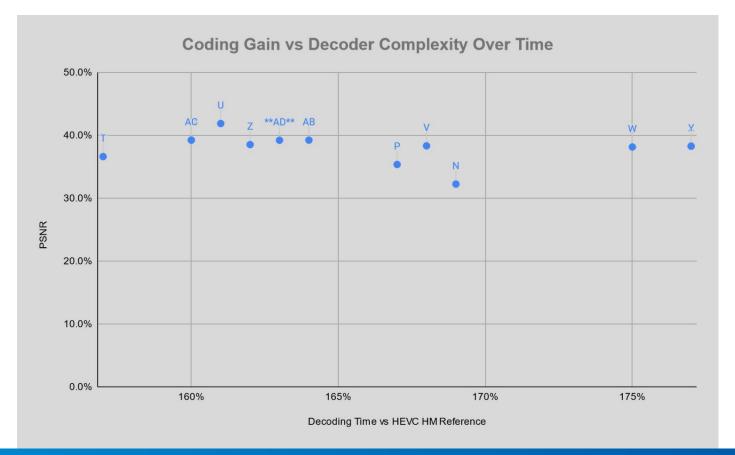
- <u>Deployment Status</u>
- <u>VVC For Streaming</u>

VVC Performance

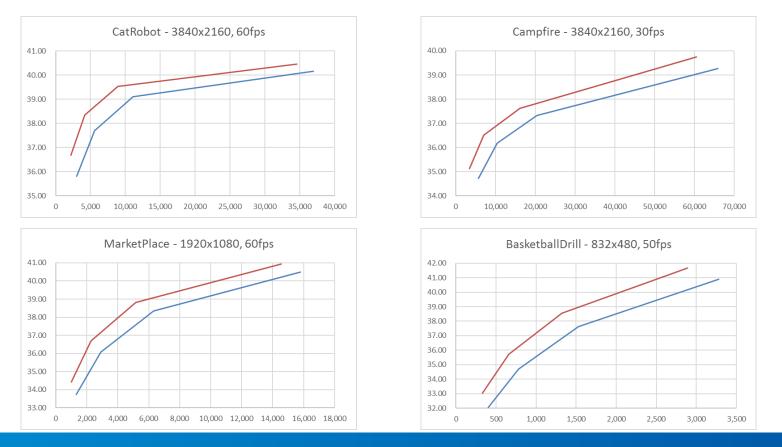

VTM 13.0 (July 2021)

Performance gain over HEVC HM16.24rc1, Random Access

SDR	psnrY	psnrU	psnrV
Class A1 (4K)	-39.74%	-39.41%	-46.15%
Class A2 (4K)	-43.15%	-40.53%	-39.75%
Class B (1080p)	-36.20%	-48.61%	-47.19%
Class C (WGA)	-32.85%	-34.70%	-36.64%
Overall	-37.41%	-41.45%	-42.68%


HDR	(w)psnr Y	(w)psnr U	(w)psnrV
Class PQ (HD)	-38.29%	-53.90%	-47.15%
Class HLG (4K)	-32.44%	-66.33%	-60.54%

Evolution VTM (SDR)



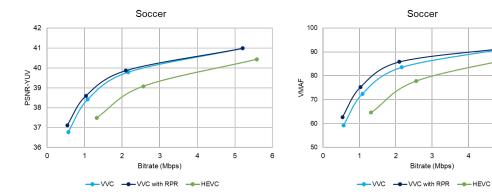
VVC: 40% Gain, 1.6x Decode Complexity vs HEVC

VVC vs HEVC, SDR content

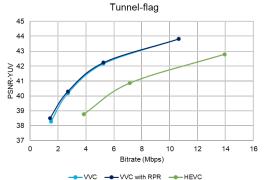
INTERDIGITAL.

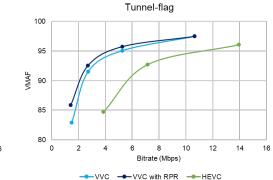
© 2019 InterDigital, Inc. All Rights Reserved.

VVC Reference Picture Resampling (RPR) Gains


Soccer

3


Bitrate (Mbps)


4

5

	BD-rate gains	
Soccer	PSNR-YUV [%]	VMAF [%]
VVC vs. HEVC	39.27%	40.23%
VVC with RPR vs. HEVC	43.02%	48.77%

	BD-rate gains	
Tunnel-flag	PSNR-YUV [%]	VMAF [%]
VVC vs. HEVC	52.64%	55.19%
VVC with RPR vs. HEVC	54.38%	61.55%

INTERDIGITAL.

6

• <u>Overview</u>

VVC Architecture and New Tools

• <u>Performance</u>

- <u>Deployment Status</u>
- <u>VVC For Streaming</u>

VVC Adoption in Application Standards

ARIB

Investigating VVC Main 10 and Multilayer for next gen digital video broadcasting system.

ATSC

Specifying VVC for inclusion in the ATSC 3.0 suite of standards.

CTA Wave

<u>Added</u> VVC profile to its Web Application Video Ecosystem Content Specification in 2021.

DASH-IF

<u>Added</u> VVC profile to its DASH-IF Interoperability Points in 2022.

DVB

<u>Adopted</u> VVC as Next Generation Video Codec into its codec toolbox in 2022.

SBTVD

<u>Selected</u> VVC as the sole video base layer codec in 2021. Specification drafting is ongoing.

SCTE

Adopted VVC into its standards, SCTE 281-1 and 281-2 in March 2023.

Compression performance requirements

DVB set out a number of performance related commercial requirements to be met by next generation video codecs.

- 8K video over legacy broadcast multiplexes.
- 5x 4K services in a 40Mbps multiplex (3x for HEVC).
- 27% and over 30% efficiency gains over HEVC for live and offline streaming.

In **SBTVD** evaluation, VVC technology was tested on variety of content test cases and gains >30% were reported for:

- Spatial resolutions from 720p to 4320p for HDR HLD and HDR PQ.
- 1080p SDR content with different frate rates.
- Sign language video in portrait mode (540x960 and 360x640)

VVC Commercial Deployment Apr 2023*

Software decoding

- HD playback on Android and iOS mobile plaftorms.
- UHD/4K playback on laptop/desktop grade processors.
- UHD/8K playback on AMD EPYC and Intel Xeon based servers.
- Web browser playback with WebAssembly with Edge, Firefox, Safari and Chrome browsers.

Hardware decoding

- 8Kp120 VVC decoder IP core.
- 4Kp60 SoC decoder for STB.
- 4Kp120 and 8Kp120 SoC decoders for TVs.
- New TV ranges supporting VVC announced for 2023.

Encoding

- Offline commercial VVC encoders with >30% performance gains over HEVC integrated into cloudbased encoding, transcoding and mobile OTT services.
- Real-time commercial VVC encoders with 15-30% performance gains over HEVC using the same or comparable HW (1-1.5x).

Open-source and commercial developer tools

- VVC encoder or decoder integration plugins available for FFMPEG, VLC, GPAC,...
- VVC conformance testing specification developed by JVET, VVC Verification and Validation bitstreams developed by DVB.
- Commercial test bitstreams and bitstream analyzers.

*JVET maintains up to date list of VVC deployments, available from JVET repository: jvet-experts.org

<u>Overview</u>

VVC Architecture and New Tools

• <u>Performance</u>

- <u>Deployment Status</u>
- <u>VVC For Streaming</u>

VVC for Streaming? What's Different From HEVC

VVEnc/VVDec

- Open Source code from one of the primary VVC contributing companies, Fraunhofer HHI
- Optimized, highly performant portable code (x86/Arm/wasm)
- Webassembly support enables browsers to play VVC (Firefox, Chrome, Edge, Safari), mitigating an issue that plagued HEVC for years
- Accelerates prototypes and commercial product deployment
- Keeps parity with non-MPEG codecs such as AV1
- MC-IF
 - Industry Forum with range of ecosystem participants, mission to foster MPEG technology adoption, starting with VVC
 - Developing VVC Commercial Guidelines for Streaming and Broadcast, first release planned for June 2023

Thanks for your attention! Questions?

© 2019 InterDigital, Inc. All Rights Reserved.

