http://forpub.s3.amazonaws.com/SMW_W1-download.zip Download all code and test files except LCEVC (Windows-only)

Download presentation: bit.ly/W1_SMW_2022

W1: ADVANCED CODEC IMPLEMENTATION & PRODUCTION

Streaming Media West

Jan Ozer

janozer@gmail.com

www.streaminglearningcenter.com

Courses.streaminglearningcenter.com

Introduction

https://www.linkedin.com/in/jan-ozer/

Jan Ozer

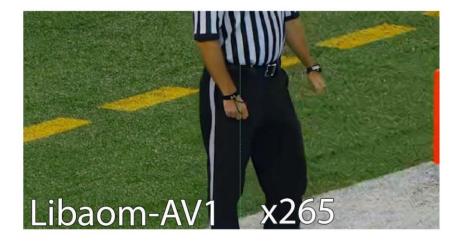
I help companies train new technical hires in streaming mediarelated positions; I also help companies optimize their codec selections and encoding stacks, and evaluate new encoders and codecs.

Talks about #encodingladders, #codecperformance, and #streamingencoding Galax, Virginia, United States \cdot Contact info

Jan

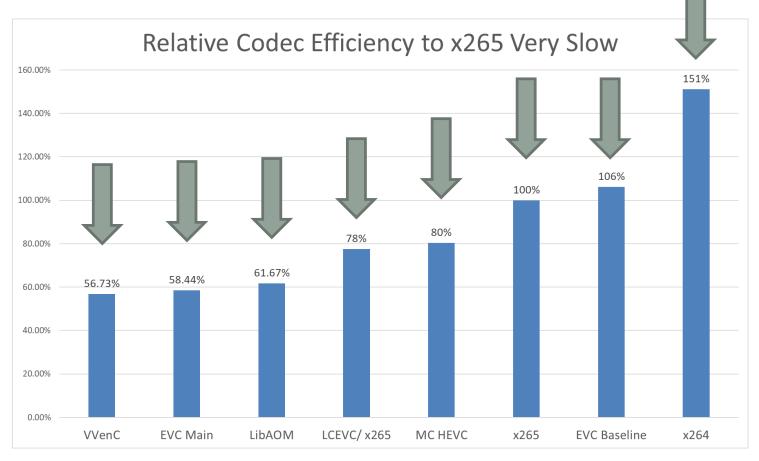
- Contributing editor Streaming Media Magazine
- Author Video Encoding by the Numbers
- Blogs at Streaming Learning Center/OTTVerse
- Courses at courses.streaminglearningcenter.com

Agenda

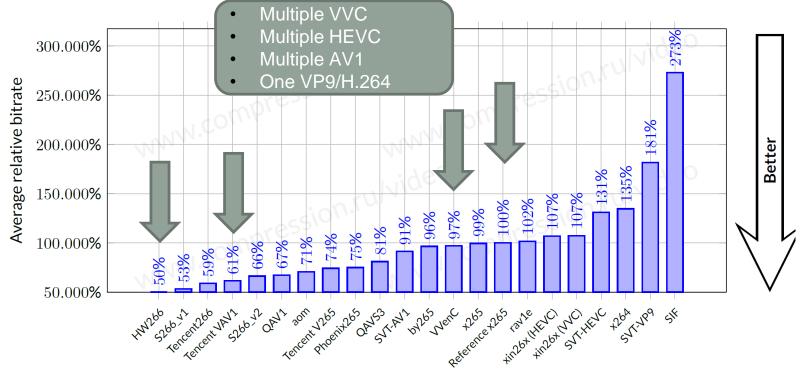

- Introduction
- Overall quality
- H.264
- VP9
- HEVC
- AV1
- VVC
- LCEVC
- EVC

Quality

Should be 9:05


- Streaming Media
- MSU
- Key takeaways

Testing EVC, VVC, and LCEVC: How Do the Latest MPEG Codecs Stack Up?



https://bit.ly/codec_soup

Streaming Media Magazine

Moscow State University

Codec

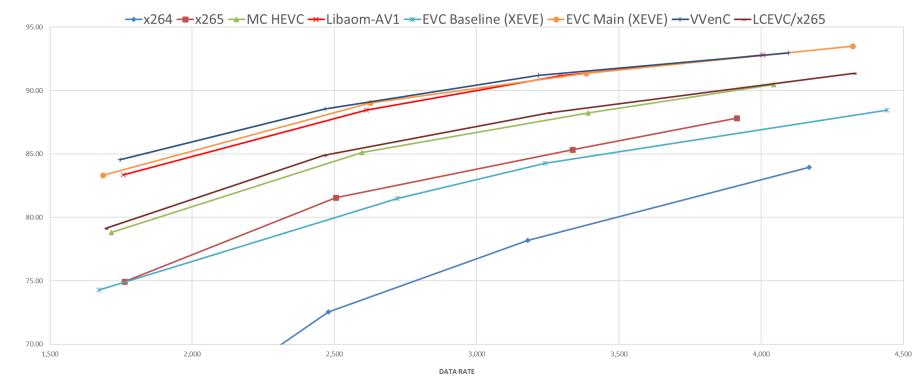
http://bit.ly/MSU_codec_2021

Common Data Points – vs. x265

	Best VVC	EVC Main	Best AV1	LCEVC/ x265	Other HEVC	EVC Baseline	x264
Streaming Media	~43%	~42%	~38%	~22%	~20%	+~6%	+~51%
MSU	~50%	NA	~39%	NA	~26%	NA	+~35%

Common takeaways (Streaming Media and MSU):

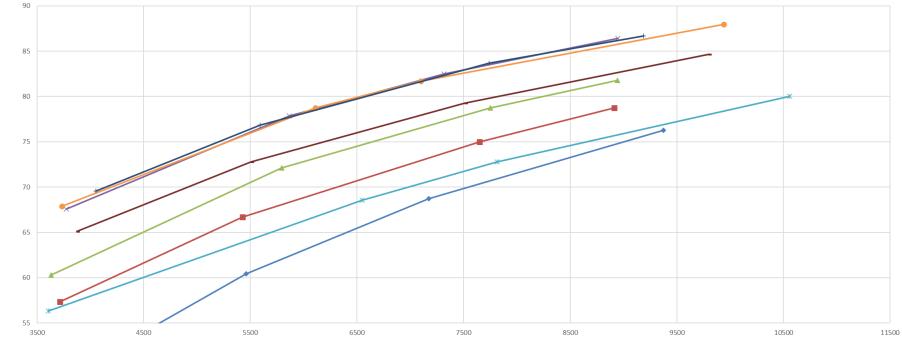
- VVC between 43 50% more efficient than x265
- AV1 around 38% more efficient than x265
- Other HEVC implementations up to 26% more efficient than x265
- x265 between 35 51% more efficient than x264
- Other takeaways (Streaming Media only):
 - EVC Main very efficient in early open-source version ~42% more efficient than x265
 - LCEVC/x265 as base layer 22% more efficient than x265
 - EVC Baseline ~45% more efficient than x264


Caveat

- Streaming Media/MSU tests are BD-Rate computations based upon *four 1080p files*
 - You don't distribute four 1080p files
- To compute true impact on your bandwidth/QoE
 - Full encoding ladder
 - Accurate rung usage rate

Rate Distortion Curves and BD-Rate Charts

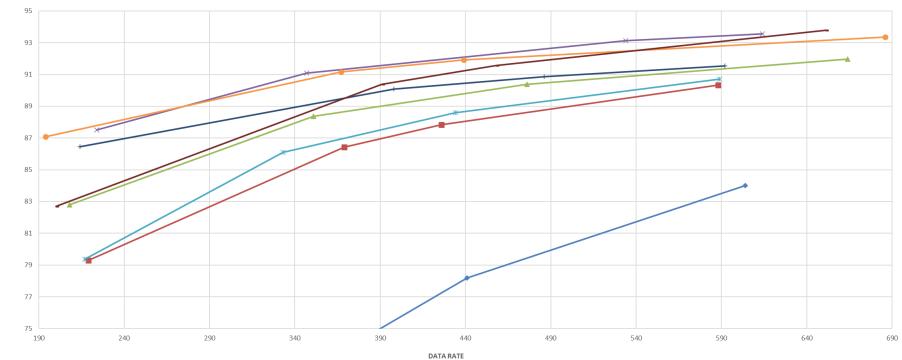
- Summary
- Crowd Run
- Elektra
- EuroTruckSimulator 2
- Football
- Sintel


OVERALL - VMAF

				мс	Libaom-	Baseline	Main		LCEVC/
Rank	Overall	x264	x265	HEVC	AV1	(XEVE)	(XEVE)	VVenC	x265
8	x264	Х	51.19%	84.22%	128.89%	43.26%	139.23%	149.89%	89.96%
6	x265	-33.86%	Х	24.44%	62.14%	-5.71%	71.11%	76.29%	28.98%
5	MC HEVC	-45.72%	-19.64%	Х	30.81%	-24.72%	37.06%	40.93%	3.56%
3	Libaom-AV1	-56.31%	-38.33%	-23.55%	X	-41.57%	3.52%	5.87%	-20.91%
7	EVC Baseline (XEVE)	-30.20%	6.05%	32.83%	71.14%	Х	80.48%	85.48%	37.69%
2	EVC Main (XEVE)	-58.20%	-41.56%	-27.04%	-3.40%	-44.59%	Х	2.42%	-24.12%
1	VVenC	-59.98%	-43.27%	-29.04%	-5.55%	-46.08%	-2.36%	Х	-26.18%
4	LCEVC/ x265	-47.36%	-22.47%	-3.44%	26.44%	-27.37%	31.79%	35.47%	X

CROWD RUN

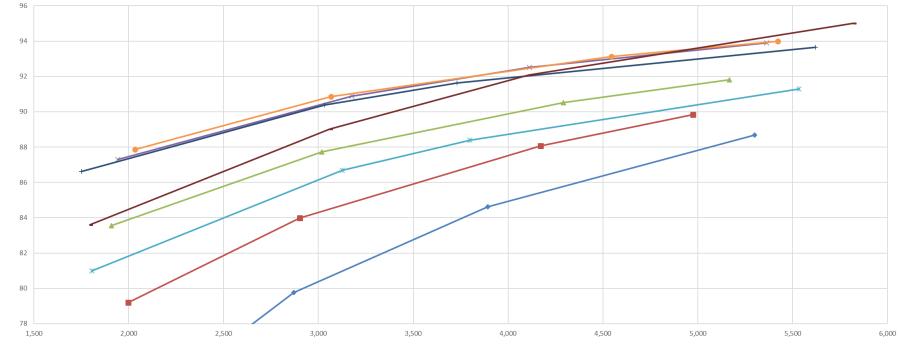
→ x264 → x265 → MC HEVC → Libaom-AV1 → EVC Baseline (XEVE) → EVC Main (XEVE) → VVenC → LCEVC/ x265



DATA RATE

					Libaom-	Baseline	EVC Main		LCEVC/
	Overall	x264	x265	MC HEVC	AV1	(XEVE)	(XEVE)	VVenC	x265
8	x264	Х	23.64%	42.62%	77.38%	13.74%	79.87%	77.12%	53.82%
6	x265	-19.12%	Х	16.55%	48.45%	-8.96%	50.25%	48.96%	27.13%
5	MC HEVC	-29.89%	-14.20%	Х	27.09%	-22.54%	28.17%	27.60%	8.29%
3	Libaom-AV1	-43.62%	-32.64%	-21.31%	Х	-39.73%	0.27%	0.38%	-15.52%
7	EVC Baseline (XEVE)	-12.08%	9.84%	29.10%	65.93%	Х	67.71%	66.52%	41.55%
2	EVC Main (XEVE)	-44.40%	-33.44%	-21.98%	-0.27%	-40.37%	Х	0.29%	-15.97%
1	VVenC	-43.54%	-32.87%	-21.63%	-0.38%	-39.95%	-0.29%	Х	-16.21%
4	LCEVC/ x265	-34.99%	-21.34%	-7.65%	18.38%	-29.35%	19.01%	19.34%	Х

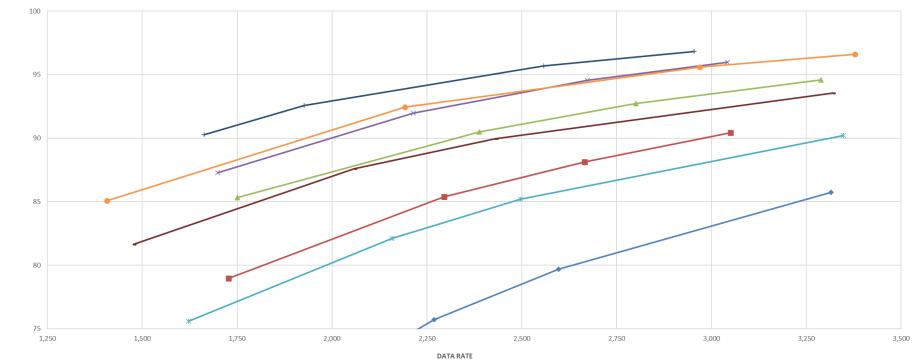
ELEKTRA


→x264 →x265 → MC HEVC →Libaom-AV1 →EVC Baseline (XEVE) →EVC Main (XEVE) →VVenC →LCEVC/x265

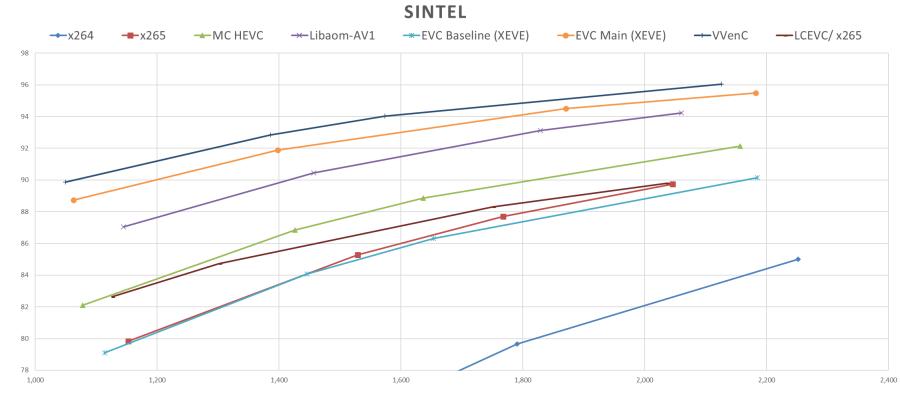
					Libaom-	Baseline	EVC Main		LCEVC/
	Overall	x264	x265	MC HEVC	AV1	(XEVE)	(XEVE)	VVenC	x265
8	x264	Х	107.87%	169.93%	100.00%	116.90%	100.00%	100.00%	180.43%
7	x265	-51.89%	Х	30.76%	88.80%	5.96%	97.83%	57.88%	42.59%
5	MC HEVC	-62.95%	-23.52%	Х	51.28%	-18.02%	53.07%	18.79%	12.33%
1	Libaom-AV1	-100.00%	-47.03%	-33.90%	Х	-43.48%	-2.45%	-22.87%	-18.61%
6	EVC Baseline (XE	-53.90%	-5.63%	21.98%	76.94%	Х	83.95%	45.65%	33.81%
2	EVC Main (XEVE)	-100.00%	-49.45%	-34.67%	2.51%	-45.64%	Х	-23.63%	-17.99%
3	VVenC	-100.00%	-36.66%	-15.82%	29.65%	-31.34%	30.95%	Х	-2.47%
4	LCEVC/ x265	-64.34%	-29.87%	-10.98%	22.87%	-25.27%	21.94%	2.53%	Х

EUROTRUCKSIMULATOR2

→x264 →x265 → MC HEVC →Libaom-AV1 →EVC Baseline (XEVE) →EVC Main (XEVE) →VVenC →LCEVC/x265



DATA RATE


					Libaom-	Baseline	EVC Main		LCEVC/
	Overall	x264	x265	MC HEVC	AV1	(XEVE)	(XEVE)	VVenC	x265
8	x264	Х	28.81%	72.71%	136.28%	53.07%	140.00%	142.11%	89.10%
7	x265	-22.37%	Х	36.99%	91.34%	19.29%	95.66%	93.67%	51.73%
5	MC HEVC	-42.10%	-27.00%	Х	44.28%	-14.47%	48.35%	42.94%	13.80%
2	Libaom-AV1	-57.68%	-47.74%	-30.69%	Х	-40.51%	2.44%	-3.44%	-13.23%
6	EVC Baseline (XE	-34.67%	-16.17%	16.92%	68.09%	Х	73.02%	67.26%	31.97%
1	EVC Main (XEVE)	-58.33%	-48.89%	-32.59%	-2.38%	-42.20%	Х	-6.23%	-13.97%
3	VVenC	-58.70%	-48.37%	-30.04%	3.56%	-40.21%	6.64%	Х	-12.51%
4	LCEVC/ x265	-47.12%	-34.09%	-12.13%	15.25%	-24.22%	16.24%	14.29%	Х

FOOTBALL

→x264 →x265 → MC HEVC → Libaom-AV1 → EVC Baseline (XEVE) → EVC Main (XEVE) → VVenC → LCEVC/ x265

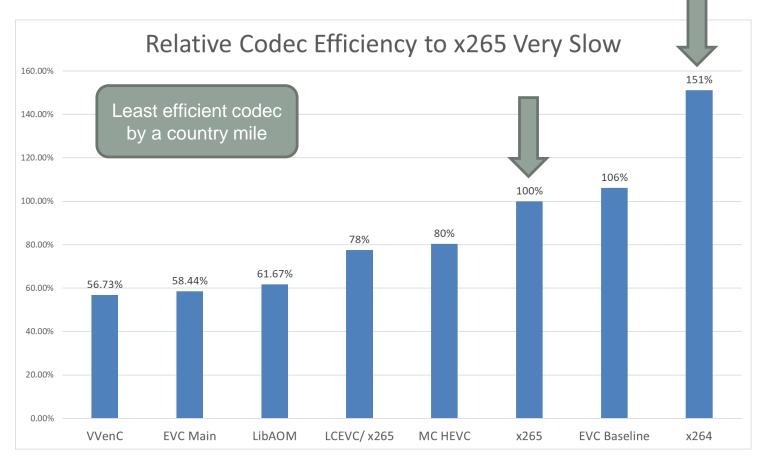
					Libaom-	Baseline	EVC Main		LCEVC/
	Overall	x264	x265	MC HEVC	AV1	(XEVE)	(XEVE)	VVenC	x265
8	x264	Х	44.57%	85.88%	100.00%	33.74%	129.47%	100.00%	85.72%
6	x265	-30.83%	Х	29.84%	51.14%	-8.97%	62.83%	81.66%	26.86%
4	MC HEVC	-46.20%	-22.98%	Х	18.70%	-30.25%	25.17%	43.24%	-6.34%
3	Libaom-AV1	-100.00%	-33.84%	-15.75%	Х	-40.16%	4.61%	18.57%	-20.93%
7	EVC Baseline (XEVE)	-25.23%	9.86%	43.37%	67.10%	Х	79.71%	100.00%	39.83%
2	EVC Main (XEVE)	-56.42%	-38.59%	-20.11%	-4.41%	-44.36%	Х	15.28%	-22.96%
1	VVenC	-100.00%	-44.95%	-30.19%	-15.66%	-100.00%	-13.26%	Х	-7.80%
5	LCEVC/ x265	-46.16%	-21.17%	6.77%	26.47%	-28.48%	29.79%	8.46%	Х

VMAF POINTS

DATA RATE

					Libaom-	Baseline	EVC Main		LCEVC/
	Overall	x264	x265	MC HEVC	AV1	(XEVE)	(XEVE)	VVenC	x265
8	x264	Х	53.16%	80.62%	100.00%	52.53%	100.00%	100.00%	74.75%
6	x265	-34.71%	Х	18.01%	48.00%	-1.60%	78.18%	100.00%	9.90%
4	MC HEVC	-44.63%	-15.26%	Х	27.23%	-16.91%	51.77%	67.96%	-6.82%
3	Libaom-AV1	-100.00%	-32.43%	-21.40%	Х	-34.49%	17.49%	29.82%	-29.30%
7	EVC Baseline (XEVE)	-34.44%	1.63%	20.35%	52.65%	Х	84.07%	103.69%	12.12%
2	EVC Main (XEVE)	-100.00%	-43.88%	-34.11%	-14.88%	-45.67%	Х	11.37%	-42.54%
1	VVenC	-100.00%	-100.00%	-40.46%	-22.97%	-50.90%	-10.21%	Х	-100.00%
5	LCEVC/ x265	-42.77%	-9.01%	7.32%	41.45%	-10.81%	74.04%	100.00%	Х

H.264 – 2022 Perspective


- About H.264
- Video quality
- Known royalty costs
- Unique selling proposition
- Rich parents (key stakeholders)
- Producibility
- Playability

Should be 9:15

About H.264

- Standards-based codec from MPEG/ITU
 - MPEG AVC (Advanced Video Coding)
 - ITU H.264
- Published August 17, 2004
- Standards-based successor to MPEG-2

Streaming Media Magazine

Known Royalty Cost

- Royalties are an accepted cost of video codecs
 - · Vast bulk paid by hardware and software implementors; not content producers
 - H.264 does have content fees

- Products sold to end users and OEM for PC but not part of OS (decoder, encoder or product consisting of one decoder and one encoder = "unit")
 - 0 100,000 units/year = no royalty (available to one legal entity in an affiliated group)
 - US \$0.20 per unit after first 100,000 units/year
 - Above 5 million units/year, royalty = US \$0.10 per unit
 - Enterprise cap: \$3.5M per year 2005-2006, \$4.25M per year 2007-08, \$5M per year 2009-10, \$6.5Mper year 2011-2015; \$8.125M in 2016 and \$9.75M per year in 2017 through 2025

- 0-100K \$0.00
- 100K 5M \$0.20
- 5 M+ = \$0.10
- Cap: Currently \$9.75

Known Royalty Cost - Content

Where End User pays for AVC Video

- Subscription (not limited by title) 100,000 or fewer subscribers/yr = no royalty; > 100,000 to 250,000 subscribers/yr = \$25,000; >250,000 to 500,000 subscribers/yr = \$50,000; >500,000 to 1M subscribers/yr = \$75,000; >1M subscribers/yr = \$100,000
- Title-by-Title 12 minutes or less = no royalty; >12 minutes in length = lower of (a) 2% or (b) \$0.02 per title

Where remuneration is from other sources

- Free Television (a) one-time \$2,500 per transmission encoder or (b) annual fee starting at \$2,500 for > 100,000 HH rising to maximum \$10,000 for >1,000,000 HH
- Internet Broadcast AVC Video (not title-by-title, not subscription) no royalty for life of the AVC Patent Portfolio License

Subscriber: \$100K cap

Per-title: lower of 2% or \$0.02

Free TV: \$10K cap

Free Internet video – No royalty

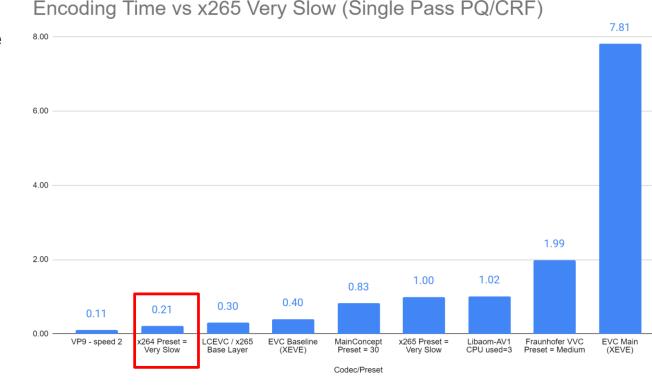
Codec Unique Selling Proposition

- Cheap to encode
- Plays everywhere

Rich Parents – H.264 Stakeholder

 Virtually all companies in the broadcast or streaming media ecosystem Publisher, product, or service providerAll support H.264

Producibility


- Can you affordably produce the codec in software?
- What about live origination and transcode?
 - Software?
 - Hardware?

Producibility - Software

Device specifications

Device name	DESKTOP-E13MMP4		
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz	3.40 GHz	
Installed RAM	16.0 GB (15.9 GB usable)		

- H.264 is one of the least expensive codecs to produce
- Can be produced very efficiently in software
- Supported by every desktop and cloud encoder, for-fee and open source

Cloud Pricing

	AWS	Azure	Bitmovin	Brightcove	Tencent
Highest base charge (30 fps/1080p)	\$0.042	\$0.03	~\$0.02	\$0.08	\$0.0215

go.aws/37lbODX bit.ly/Azure pricing bit.ly/BM pricing bit.ly/BC pricing bit.ly/TC pricing

FFmpeg Command Strings

Single Pass VBR

ffmpeg -y -i input.mp4 -c:v libx264 -b:v 3350K -an -preset veryfast -threads 8 -g 60 -keyint_min 60 -sc_threshold 0 output_x264.mp4

Two-Pass VBR

ffmpeg -y -i input.mp4 -c:v libx264 -b:v 2500K -preset veryslow g 60 -keyint_min 60 -sc_threshold 0 -pass 1 -f mp4 NUL & \

ffmpeg -i input.mp4 -c:v libx264 -b:v 2500K -maxrate 5000K bufsize 5000k -preset veryslow -g 60 -keyint_min 60 sc_threshold 0 -pass 2 output.mp4

Producibility – Hardware Origination/Transcoding for Live

	H.264	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Producibility								
- Encoder support	Ubiquitous	Ubiquitous	Ubiquitous	Near Ubiquitous	Nascent	Some	Open source	Open source
- Live software/ hardware	Yes	Yes/Yes	Yes/Minimal	WebRTC/Mi n	Min/Min	Yes	No/No	No/No

- Ubiquitous support but much less
 efficient than HEVC
- Important for live-origination, where outbound bandwidth is expensive

Playability

- Software playback status
 - Desktop/mobile
- Hardware playback status
 - Mobile/Living Room

Playability - Performance

- Can the codec play in software?
 - H.264 is supported in hardware on most platforms
 - But can play efficiently without hardware acceleration
 - No problem

Device specifications

Device name	DESKTOP-E13MMP4	
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 3.40 G	ΞHz
Installed RAM	16.0 GB (15.9 GB usable)	

Software Playback Frames Per Second

Playability – Compatibility - Computer and Mobile Browser Support

			-				-	
	H.264	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	642 fps	388 fps	621 fps	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser support	98.44	22.91%	97.64%	73.2%	Not listed	Not listed	Not listed	Not listed
- Browser workaround	NA	No	NA	NA	No	Yes	No	No

- H.264 can play in software, but how is platform support?
- H.264 superpower is near ubiquitous playback

https://caniuse.com/?search=h.264

H.264 Chip Support – Mobile

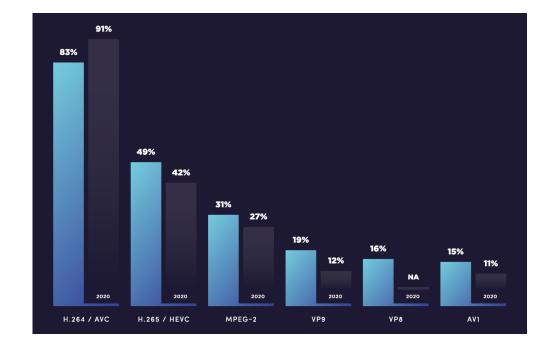
	H.264	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Mobile/Computer Device Support	Fully supported in most devices	Fully supported in most devices	 AMD ARM HiSilicon Intel MediaTek NVIDIA Qualcomm Samsung 	 AMD Amphion Broadcom Intel MediaTek Nvidia Rockchip Samsung Google Samsung Qualcomm 	None found	NA	None found	None found

- H.264 is fully supported in Apple and Android phones
- Safe choice for power consumption

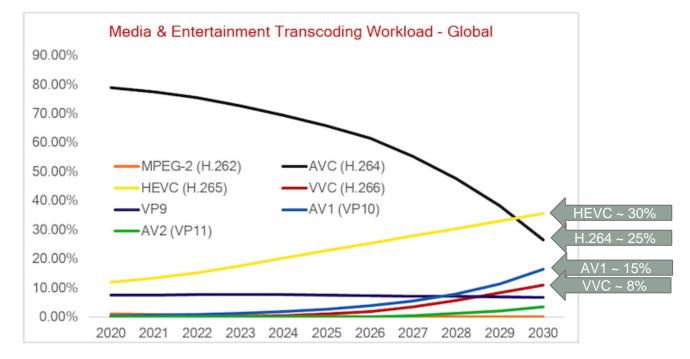
Chip Support –TV

	H.264	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
TV Chipsets	Fully supported in most living room devices	Fully supported in most living room devices with HDR	 Amlogic Imagination MediaTek RealTek 	 Allegro Amlogic Amphion Broadco m LG MediaTek Realtek Rockchip Samsung 	AllegroMediaTek			

Supported but HEVC is format of choice for HDR and 4K


Timing of Mainstream Adoption

	H.264	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	642 fps	388 fps	621 fps	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser	Now	Never	Now	Now	Never	Never	Never	Never
- Browser workaround	NA	\$\$\$\$	NA	NA	\$\$\$\$	Yes	?	?
- Mobile – hardware	Now	Now	Now	2024+	2025+	NA	Not on radar	Not on radar
- Mobile - software	Now	NA	NA	Caution	Stakeholders	Today	Not on radar	Not on radar
- Smart TV/STB	Now (but no HDR)	Ubiquitous	Ubiquitous	Mid 2023	Mid - 2025	Software- only	Not on radar	Not on radar


Third-Party Predictions

- 83% currently using H.264
 - Down from 91% in 2020
 - Hard to reconcile since H.264 is almost universally deployed for playback on legacy devices

Bitmovin - Bitmovin Video Developer Report

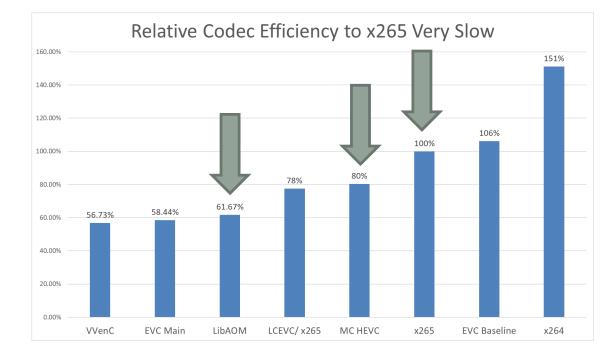
Third-Party Predictions

 Rethink TV –H.264 usage will decline over the next 8 years

http://bit.ly/rethink_codec

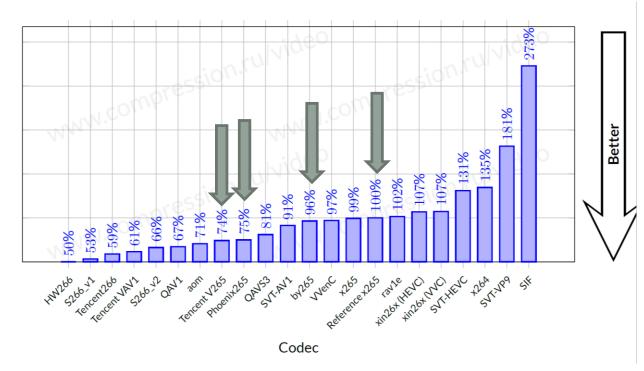
HEVC – 2022 Perspective

- About HEVC
- Video quality
- Known royalty costs
- Unique selling proposition
- Rich parents (key stakeholders)
- Producibility
- Playability


Should be 9:35

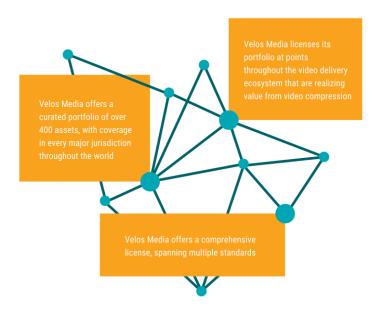
About HEVC

- Stands for High Efficiency Video Coding
- Standards-based codec from MPEG/ITU
 - MPEG HEVC
 - ITU H.265
- Published January 25, 2013
- Standards-based successor to H.264


Streaming Media Magazine – HEVC Quality

- Depends upon the codec implementation
 - Most use open source x265
 - About 33% more efficient than x264
 - MainConcept was about 47% more efficient
- Both well behind AV1
 - 58% more efficient than x264

Moscow State University


- There are many higher quality alternatives to x265
 - Here's the reference
 - ByteDance
 - Phoenix
 - Tencent
- The problem is:
 - May not be for sale or license
 - May be for private use (ByteDance)
 - Or for cloud encoding
 - Many big licensing companies not represented
 - MainConcept
 - Beamr
 - Fraunhoffer

http://bit.ly/MSU_codec_2021

Known Royalty Cost

- Three pools
 - MPEG LA
 - Access Advance (formerly HEVC Advance)
 - Velos
 - No longer traditional pool
 - Appears to be licensing their own patents across different video standards
 - No royalty charges provided
 - Former members (like Qualcomm) likely licensing directly
 - Bottom line still a mess

Royalties – HEVC – MPEG LA

- Decoder-Encoder Sublicenses
 - HEVC Products Sold to End Users by a Licensee with (a) ownership/control of the brand name or (b) if the HEVC Product bears no brand name, with discretion over decision to Sell
 - 0 100,000 units/year = no royalty (available to one Legal Entity in an affiliated group)
 - US \$0.20 per unit after first 100,000 units each year
 - Maximum annual royalty payable by an Enterprise (Legal Entity and Affiliates) is \$25M

No content royalties

Royalties – HEVC – Access Advance

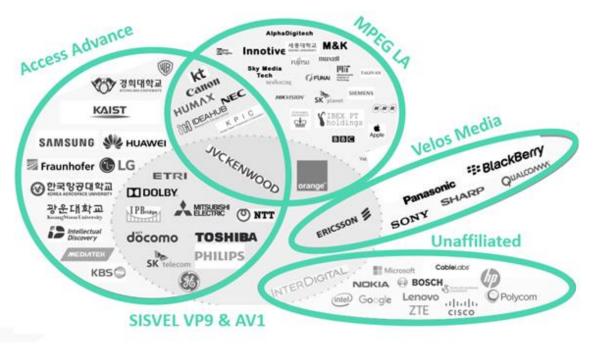
	Device Category and Examples	Selling Price	Per-Device Royalty ⁽¹⁾ All Profiles and Optional Features	Annual In- Compliance Device Category Caps ⁽²⁾ for the Period up to 1/1/2021	Annual In- Compliance Device Category Caps ⁽²⁾ for the Period on/after 1/1/2021 unless suspension applies ⁽³⁾	Annual In- Compliance Enterprise Credit and Cap ⁽²⁾ for the Period up to 1/1/2021	Annual In- Compliance Enterprise Credit and Cap ⁽²⁾ for the Period on/after 1/1/2021 unless suspension applies ^[3]
	Mobile Devices: Mobile Phone, Tablet, Laptop	All price ranges	\$0.40/\$0.20	\$30MM \$20MM (If entity does not sell phones)	\$36MM \$24MM (If entity does not sell phones)		
4	Connected Home & Other Devices: Set-Top Box, Game Console, Blu-ray Player, Desktop PC, non-4k UHD+ TV, Surveillance Cameras, Conferencing Products, Medical Imaging, Digital Signage, HEVC Software	Devices ≤\$80.00 ⁽⁴⁾ \$20 or less \$20.01-\$30.00 \$30.01-\$40.00 \$40.01-\$50.00 \$50.01-\$60.00 \$60.01-\$70.00 \$70.01-\$80.00 Devices >\$80.00 ⁽⁵⁾ and All HEVC Software	\$0.20/\$0.20 \$0.25/\$0.25 \$0.35/\$0.35 \$0.45/\$0.40 \$0.55/\$0.40 \$0.65/\$0.40 \$0.75/\$0.40 \$0.80/\$0.40	\$20MM	\$24MM	Annual Enterprise Cap \$40 million Annual Enterprise <u>Credit</u> \$25,000	Annual Enterprise Cap \$48 million Annual Enterprise Credit \$25,000
	4K UHD+ Televisions/Displays	All price ranges	\$1.20/\$0.60	\$20MM	\$24MM		
	Digital Media Storage Blu-ray Discs, Other Storage Devices	All price ranges	Per Disc/Title \$.0225/\$.01125	\$2.5MM	\$3.0MM		

Region Definitions:

- Region 1 = U.S., EU, UK, Japan, S. Korea, Australia, New Zealand, etc. See a complete list of countries/territories on the Advance website.
- Region 2 = All countries/territories outside of Region 1.

Codec USPs

- HEVC Proven HDR
- Platform support
 - Living room
 - Mobile
 - Browser
 - Apple Safari
 - Chrome (no DRM)



HEVC USP – Proven HDR

- HDR is key to premium content distribution
 - DV Profiles <u>https://sforce.co/3JDQJIx</u>`
 - HEVC is the only HDR codec supported by Dolby Vision
- HEVC is supported in all other HDR standards
 - AV1 has some support (HDR 10/10+)
 - Google going after Dolby Vision/Atmos with Caviar (more in AV1 section

Dolby Vision bitstream profile ID	Representative Dolby Vision bitstream profile string	BL/EL codec	BL:EL	BL signal cross- compatibility ID (CCID for pro-tools and content creation)
4	dvhe.04	10-bit HEVC	1:1⁄4	2
5	dvhe.05	10-bit HEVC	N/A	0
7	dvhe.07	10-bit HEVC	1:¼ for UHD; 1:1 for FHD	6
8	dvhe.08	10-bit HEVC	N/A	1, 2, or 4
9	dvav.09	8-bit AVC	N/A	2

Rich Parents - HEVC

 Patent pool structure was a mess, but primarily irritated publishers (and AOM founders) HEVC in most smartphones, tablets, all smart TVs, and many computers because contributing companies had a stake

Producibility - Software

Device specifications

 Device name
 DESKTOP-E13MMP4

 Processor
 Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz
 3.40 GHz

 Installed RAM
 16.0 GB (15.9 GB usable)
 16.0 GB (15.9 GB usable)

 HEVC is still ~5x more costly to encode than H.264

Cloud Pricing

	AWS	Azure	Bitmovin	Brightcove	Tencent
Highest quality H.264 charge (30 fps/1080p)	\$0.042	\$0.03	~\$0.02	\$0.08	\$0.0215
HEVC multiplier/cost	8x (\$0.336)	~5x (\$0.161)	2x (~\$0.04)	None (\$0.08)	2.5x (\$0.0494)
	go.aws/37lbODX	bit.ly/Azure_pricing	bit.ly/BM_pricing	bit.ly/BC pricing	bit.ly/TC_pricing

Not listed

- Encoding.com doesn't share pricing details
- Hybrik doesn't charge on a perminute basis - <u>bit.ly/hybrik_report</u>

	Monthly Source Hours								
Service Cost	1	10	50	100	200	300	400	1000	
AWS MediaConvert	\$17	\$170	\$849	\$1,698	\$3,396	\$5,094	\$6,792	\$16,980	
Azure Media Services	\$12	\$122	\$608	\$1,215	\$2,430	\$3,645	\$4,860	\$12,150	
Bitmovin	\$25	\$246	\$1,228	\$2,456	\$4,912	\$7,369	\$9,825	\$24,562	
Dolby Hybrik	\$1,001	\$1,007	\$1,037	\$1,074	\$1,148	\$1,222	\$1,296	\$1,740	
Encoding.com	\$17	\$167	\$833	\$1,666	\$3,332	\$4,999	\$6,665	\$16,662	
Telestream Cloud	\$8	\$84	\$420	\$840	\$1,680	\$2,520	\$3,360	\$8,400	
Zencoder	\$40	\$300	\$1,215	\$2,000	\$3,240	\$4,860	\$6,480	\$16,200	

Table 1. Monthly cost summary per hour of source for H.264 encoding.

FFmpeg Command Strings

Single Pass CRF

ffmpeg -y -i input.mp4 -c:v libx265 -b:v 3600K -an -preset veryfast -threads 4 -tune ssim -x265-params keyint=60:minkeyint=60:scenecut=0:open-gop=0 output_x265.mp4

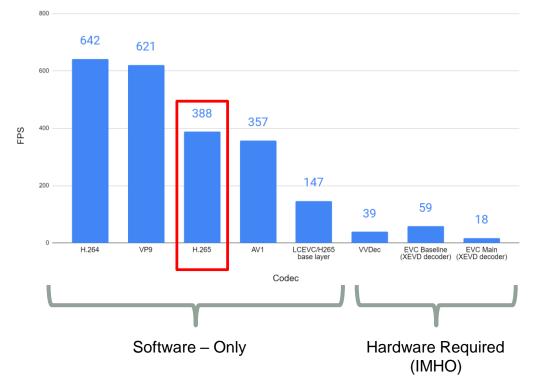
Two-Pass VBR

ffmpeg -y -i input.mp4 -c:v libx265 -b:v 2500K -preset veryslow g 60 -keyint_min 60 -sc_threshold 0 -pass 1 -f mp4 NUL & \

ffmpeg -i input.mp4 -c:v libx265 -b:v 2500K -maxrate 5000K bufsize 5000k -preset veryslow -g 60 -keyint_min 60 sc_threshold 0 -pass 2 output.mp4

Producibility – Hardware Transcoding/Origination

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Producibility							
- Encoder support	Ubiquitous	Ubiquitous	Near Ubiquitous	Nascent	Some	Open source	Open source
- Live software/hardware	Yes/Yes	Yes/Minimal	WebRTC/Min	Min/Min	Yes	No/No	No/No


Playability - Performance

- Can the codec play in software?
 - HEVC is supported in hardware on all relevant platforms, but plays well software-only on computers

Device specifications

Device name	DESKTOP-E13MMP4	
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 3.40 G	ΞHz
Installed RAM	16.0 GB (15.9 GB usable)	

Software Playback Frames Per Second

Playability – Compatibility - Computer and Mobile Browser Support

				-			
	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	388 fps	621 fps	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser support	22.91%	97.1%	74.6%	Not listed	Not listed	Not listed	Not listed
- Browser workaround	Yes	NA	NA	No	Yes	No	No

Everything changed in October

https://caniuse.com/?search=hevc

Chrome Plays HEVC

- Versions 104 107
- Requires decode on OS
 - All recent Macs/iOS have it
 - · All premium Android devices have it
 - Most recent Windows computers have it
- No Widevine support
 - Hurts premium content distributors who want to play in the browser
 - Might be supported in Canary
 - Not an issue for unprotected content
- Why did Google decide to support HEVC?
 - So much HEVC encoding in phones/tablets (including Google's). HEVC decode became critical feature
 - Antitrust scrutiny in the EU on AV1 licensing terms (maybe)

TOP STORY

Google Chrome Plays HEVC: What Does it Mean?

- HEVC support always made sense, always would have made Chrome a better and more useful browser.
- Somebody realized that it was better for Google to deliver a more capable browser than to attempt to promote what's essentially a thirdparty video codec.

HEVC Chip Support – Mobile

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Mobile/Computer Device Support	Fully supported in most devices	 AMD ARM HiSilicon Intel MediaTek NVIDIA Qualcomm Samsung 	 AMD Amphion Broadcom Intel MediaTek Nvidia Rockchip Samsung Google Samsung Qualcomm 	None found	NA	None found	None found

 HEVC is fully supported in Apple and most premium Android phones

HEVC – Operating System Support

	Microsoft Windows	macOS	Android OS	iOS
Codec support	Add-on required	Yes	Yes V	Yes 🗸
Container support	MP4 (.mp4, .m4v) QuickTime File Format (.mov) Matroska (.mkv)	MP4 (.mp4, .m4v) QuickTime File Format (.mov)	MP4 (.mp4, .m4v) Matroska (.mkv)	MP4 (.mp4, .m4v) QuickTime File Format (.mov)
Notes	- Support introduced in Windows 10 version 1507. - Built-in support was removed in Windows 10 version 1709 due to licensing costs. The HEVC Video Extensions 2 ^a add-on can be purchased from the Microsoft Store to enable HEVC playback on the default media player app Microsoft Movies & TV. ^[112]	Support introduced in macOS 10.13 High Sierra ^[118]	Support introduced in Android 5.0 ^[113]	Support introduced in iOS 11.0 ^[119]

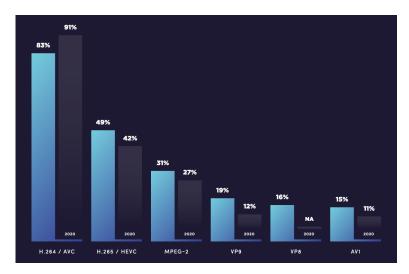
HEVC support by different operating systems

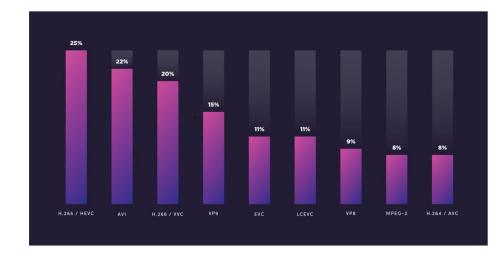
- Is HEVC supported in Windows hardware?
 - Intel CPU support Skylake 2016 (sixth gen Intel Core)
 - AMD Ryzen Gen 1- 2016

- Most reasonably current Windows computers should play HEVC in hardware
 - Which means that Chrome playback should work

Chip Support –TV

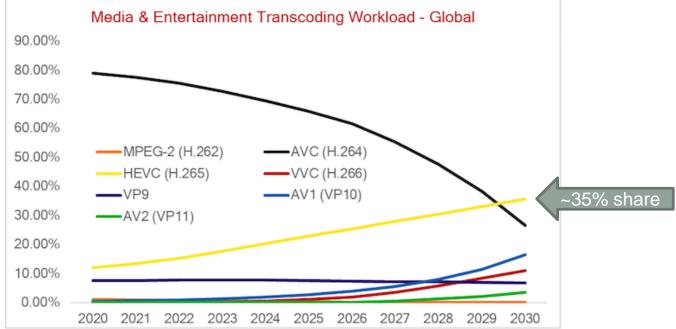
	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
TV Chipsets	Fully supported in most living room devices with HDR	 Amlogic Imagination MediaTek RealTek 	 Allegro Amlogic Amphion Broadcom LG MediaTek Realtek Rockchip Samsung 	AllegroMediaTek			


Codec of choice for HDR and premium content, particularly 4K


Timing of Mainstream Adoption

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	388 fps	621	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser	2022/23	Now	Now	Never	Never	Never	Never
- Browser workaround	NA	NA	NA	\$\$\$\$	Yes	?	?
- Mobile - hardware	Now	Now	2024+	2025+	NA	Not on radar	Not on radar
- Mobile - software	NA	NA	Caution	Stakeholders	Today	Not on radar	Not on radar
- Smart TV/STB	Ubiquitous	Ubiquitous	Mid 2023	Mid - 2025	Software-only	Not on radar	Not on radar

Third-Party Predictions



49% currently using HEVC Up from 42% in 2020

 25% plan to deploy HEVC in 2022

Bitmovin - Bitmovin Video Developer Report

Third-Party Predictions

Rethink TV – HEVC is biggest mover

http://bit.ly/rethink_codec

VP9 – 2022 Perspective

Should be

9:50

- About VP9
- Quality
- Royalty status
- Rich parents (key stakeholders)
- Producibility
- Playability

About – VP9

- Developed by Google
 - From technology acquired from On2 in 2010
 - Successor to VP8
 - Released June 17, 2013
 - Predominantly used by YouTube
 - More recently also used by Netflix and Facebook
- Goal open-source/royalty free
- Sisvel announced patent pool in March 2019

VP9 Quality - Bitmovin

HEVC vs VP9: The Battle of the Video Codecs

Christian Feldmann August 05, 2020 6	min read 🚺 Blog Post 📗 Engineering 🚺 Video Encoding
✤ BITMOVIN	λ Υ Υ
VP9 vs HEVC: Modern codecs comparison	

		BD-rate PSNR	BD-rate SSIM	BD-rate VMAF
Fixed resolution	x265 vs x264	-45.14 %	-39.81 %	-56.75 %
	libvpx-vp9 vs x264	-52.10 %	-50.93 %	-47.18 %
Bitrate Ladder	x265 vs x264	-33.25 %	-28.21	-38.70%
	libvpx-vp9 vs x264	-36.88 %	-36.23 %	-39.27 %

- Fixed resolution HEVC wins
- Full bitrate ladder, VP9 slightly more efficient than HEVC
- About a 40% savings compared to x264 (bitrate ladder)

Known Royalty Cost

Key Takeaways

- VP9 Google says VP9 is open source and royalty free
 - But, doesn't indemnify if sued for patent infringement
- Sisvel VP9 pool claims decoder royalties
- No existing claim for content royalties of any kind

Minimum Commitment Maximum Commitment Applicable royalty rate per threshold (no. of units) threshold (no. of units) unit 100,000 EUR 0.126 1,000,000 EUR 0.117 100,001 1,000,001 25,000,000 EUR 0.108 25,000,001 75,000,000 EUR 0.099 75,000,001 or above unlimited EUR 0.090

Consumer Non-Display Devices

Minimum Commitment threshold (no. of units)	Maximum Commitment threshold (no. of units)	Applicable royalty rate per unit			
1	20,000	EUR 0.042			
20,001	200,000	EUR 0.039			
200,001	5,000,000	EUR 0.036			
5,000,001	14,000,000	EUR 0.033			
14,000,001 or above	unlimited	EUR 0.030			

http://bit.ly/Sis_VP9

Consumer Display Devices

Rich Parents – VP9 - One Primary Parent (But a Big One)

The Arctic 4K - Scenic Wildlife Film With Calming Music

 YouTube max encode for H.264 videos is 1080p; all 4K in VP9/AV1

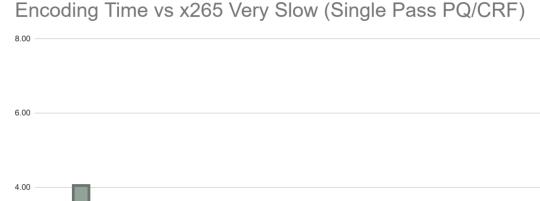
Apple TV 4K finally gets support for 4K YouTube videos but with some limitations

One of the highlights of tvOS 14 is the support for 4K videos on YouTube. The feature is finally rolling out months after the official announcement.

Apple TV now plays YouTube videos in 4K, with limits

The update is rolling out gradually.

iPhones, iPads can now stream 4K YouTube videos in iOS 14


Mike Peterson | Jun 23, 2020

 This alone convinced most smart TV vendors to include VP9 decode (and Apple)

Producibility - Software

Device specifications

Device name	DESKTOP-E13MMP4		
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz	3.40 GHz	
Installed RAM	16.0 GB (15.9 GB usable)		

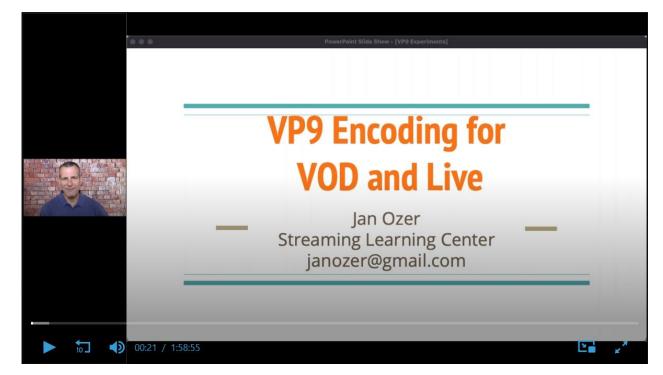
1.99 2.00 1.00 1.02 0.83 0.40 0.30 0.21 0.11 0.00 VP9 - speed 2 x264 Preset = **EVC Baseline** x265 Preset = LCEVC / x265 MainConcept Libaom-AV1 Fraunhofer VVC EVC Main Very Slow Base Layer (XEVE) Preset = 30 Very Slow CPU used=3 Preset = Medium (XEVE)

- VP9 speed 2 fastest (.11x)
 ~ 10x more efficient than AV1
- Twice as fast as x264 very slow (.21x) (in single pass configuration)

FFmpeg Command Strings

Single Pass VBR

ffmpeg -y -i input.mp4 -c:v libvpx-vp9 -b:v 3600 -an -speed 4
output_VP9.webm


Two-Pass VBR

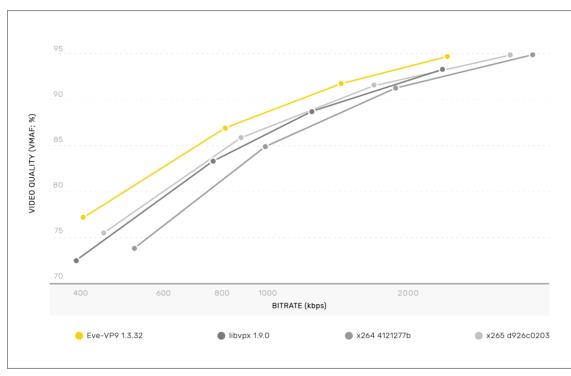
ffmpeg -y -i input.mp4 -c:v libvpx-vp9 -pass 1 -b:v 2500K -g 60 keyint_min 60 -speed 4 -threads 8 -quality good -tile-columns 4 -auto-altref 1 -lag-in-frames 25 -frame-parallel 1 -f -row-mt 1 webm NUL && \

ffmpeg -y -i input.mp4 -c:v libvpx-vp9 -pass 2 -b:v 2500K -maxrate 5000K
-g 60 -keyint_min 60 -speed 2 -threads 8 -quality good -tile-columns 4 auto-alt-ref 1 -lag-in-frames 25 -frame-parallel 1 -row-mt 1 output.webm

VP9 Encoding Resources

- Free webinar
- Works through optimal VP9 encoding string
 - Shown above
 - If you want to learn what the switches are and what they do
 - What's enabled by default and what isn't

https://bit.ly/Produce_VP9


Cloud Pricing

	AWS	Azure	Bitmovin	Brightcove	Tencent
Highest base charge (30 fps/1080p)	\$0.042	\$0.03	~\$0.02	\$0.08	\$0.0215
HEVC multiplier/cost	8x - \$0.336	~5x - \$0.161	2x - ~\$0.04	None -\$0.08	2.3x - \$0.0494
VP9	~4x - \$0.1575	Not supported	2x - ~\$0.04	None (\$0.08)	Not supported

go.aws/37IbODX bit.ly/Azure_pricing bit.ly/BM_pricing bit.ly/BC_pricing bit.ly/TC_pricing

VP9 Encoding Quality

- Most VP9 encoding is FFmpegbased
- There is at least one premium codec from Two Orioles
 - I believe it's used by Netflix
 - Terms unknown

https://www.twoorioles.com/eve-vp9

Argos VCU

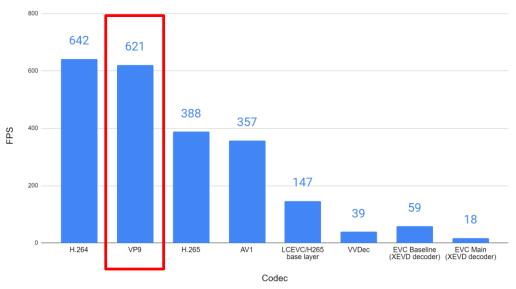
- Software transcoding is very efficient
- When you need to encode 500 hours a minute you need hardware
- Google built their own VP9 encoding chipset
 - Argos VCU
 - Not available commercially

YouTube is now building its own videotranscoding chips

Google throws custom silicon at YouTube's massive video-transcoding workload.

Producibility – Software and Hardware

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Producibility							
- Encoder support	Ubiquitous	Ubiquitous	Near Ubiquitous	Nascent	Some	Open source	Open source
- Live software/hardware	Yes/Yes	Yes/Minimal	WebRTC/Min	Min/Min	Yes	No/No	No/No


Fringe application for VP9 Xilinx (now AMD), and FPGA encoder for Twitch.tv, but not for general resale

Playability - Performance

Device specifications

Device name	DESKTOP-E13MMP4	
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz	3.40 GHz
Installed RAM	16.0 GB (15.9 GB usable)	

Software Playback Frames Per Second

- VP9 very efficient; can play in software
 - Hardware support on all major mobile platforms

Playability – Compatibility - Computer and Mobile Browser Support

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	388 fps	621 fps	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser support	22.91%	97.64%	73.2%	Not listed	Not listed	Not listed	Not listed
- Browser workaround	No	NA	NA	No	Yes	No	No

- CanIUse shows compatibility percentage
 - Browser support is a key strength for VP9
 - That's why it's used by YouTube and Facebook and other non-premium publishers

NA		No		No Yes			No			No				
WebM Multimedia quality oper video. Webl	format c n video c	lesigned to ompressior	provide a r format fo	royalty-fre r use with	HTML5				Usage Global		78.9	% of all us		? 54%
Current align Chrome	ed Usage	Safari 3.1 - 5.1 - 12	Firefox	Filtered	All 🌣	Chrome for Android	Safari on* iOS	Samsung Internet	Opera Mini	Opera * Mobile	UC Browser for Android	Android * Browser	Firefox for Android	(Bro
4-5 6-24 25-106	12-13 12 14-18 79-105 106	12.1-13.1 14 14.1-15.6 16.0 16.1	2-3.6 4-27 28-105 106	10.1 11.5-15 16-90 91	6-8 ^{B1} 9-10 B111	Ĩ	3.2-12.1 12.2-13.7 14-16.0	4 5-17.0 18.0	all	12-12.1	13.4	2.1-2.2 2.3-4.4.4 106	105	1
108-110	100		107-108	51		100	10.1	10.0	an	04	13.4	100	105	

https://caniuse.com/?search=vp9

Chip Support – Mobile

HEVCVP9AV1VVCLCEVCEVC BaselineEVC MainMobile/Computer Device SupportFully supported in most devices• AMD • Apple • ARM • HiSilicon • Intel • MediaTek • Nvidia • Samsung • Qualcomm• AMD • Amphion • Broadcom • Intel • MediaTek • Samsung • QualcommNone found • ARM • Broadcom • Intel • MediaTek • Samsung • QualcommNone found • ARM • Broadcom • Broadcom								
Device Supportsupported in most devices• Apple• Amphion • Broadcom • Intel• Broadcom • Broadcom • Intel• HiSilicon• Intel• MediaTek • MediaTek• MediaTek • Nvidia • Nvidia• Nvidia • Rockchip • Samsung• Google • Samsung• Google • Samsung• Google • Samsung		HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
	-	supported in most	 Apple ARM HiSilicon Intel MediaTek NVIDIA Qualcomm 	 Amphion Broadcom Intel MediaTek Nvidia Rockchip Samsung Google Samsung 	None found	NA	None found	None found

 Hardware support by Apple and most premium Android suppliers

VP9 – Mobile Deployments

- Apple
 - Added support in August 2020
 - <u>bit.ly/apple_vp9</u>
- Android
 - Google added support with version 4.4
 - <u>bit.ly/and_supportedmedia</u>
 - Netflix started delivering downloads in VP9 in December 2016

iOS 14 Brings 4K YouTube Video Streaming Support to iPhone and iPad

Posted by Mahit Huilgol on Jun 23, 2020 in News, YouTube

bit.ly/ios_vp9

HOME > DIGITAL > NEWS

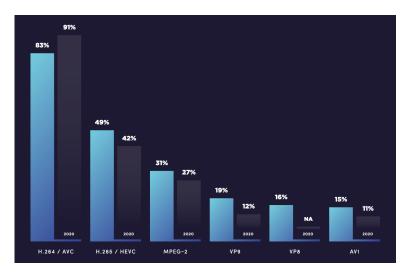
Dec 2, 2016 3:08pm PT

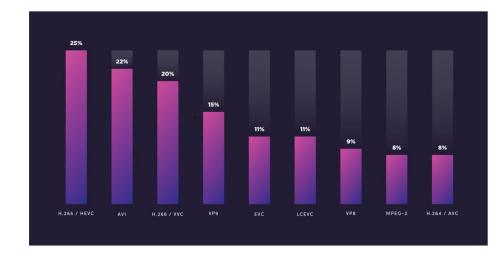
How Netflix Delivers Better-Looking Downloads Without Eating Up All Your Phone Storage

By Janko Roettgers 🗸

bit.lv/3p7xZcm

dennizn / Shutterstock

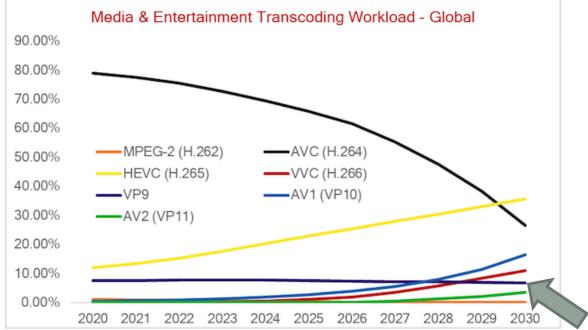

Chip Support –TV


	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
TV Chipsets	Fully supported in most living room devices with HDR	 Apple (Apple TV) Amlogic Imagination MediaTek RealTek 	 Allegro Amlogic Amphion Broadcom LG MediaTek Realtek Rockchip Samsung 	AllegroMediaTek			
	HDF	R10+ but not olby Vision					

 Very widely supported by TV operating systems (the 4K YouTube effect)

See link below for HDR10+ support

Third-Party Predictions



- 19% currently using VP9
- Up from 12% in 2020

15% plan to deploy VP9 in 2022

Bitmovin - Bitmovin Video Developer Report

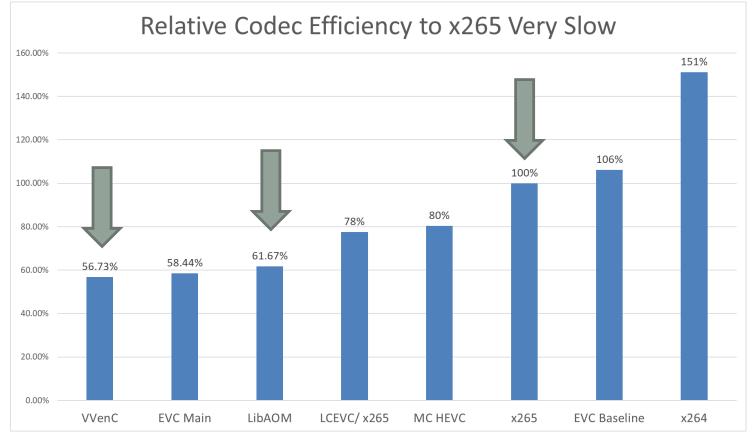
Third-Party Predictions

 Rethink TV – VP9 currently around 8% and doesn't lose much through 2030

http://bit.ly/rethink_codec

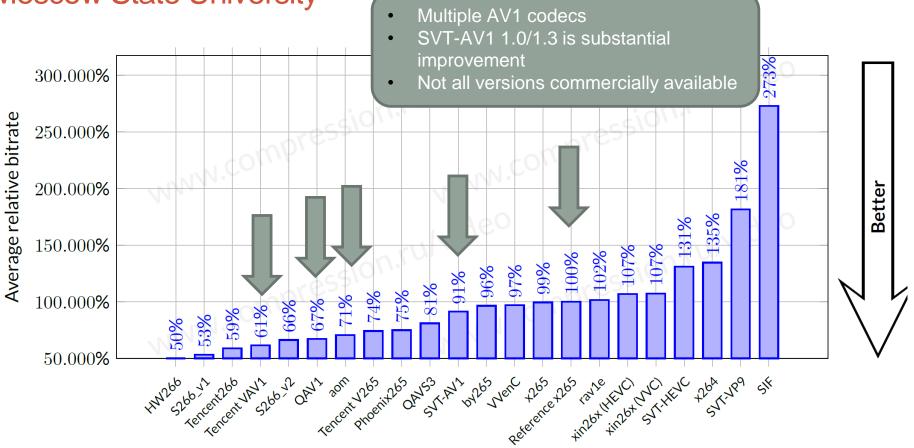
AV1 – 2022 Perspective

- About AV1
- Quality/USP
- Royalty status
- Rich parents (key stakeholders)
- Producibility
- Playability


Should be 10:10

About – AV1

- Developed by the Alliance for Open Media
 - Released March 28, 2018
 - AV1 = AOMedia Video 1
- Goal open-source/royalty free
- Sisvel announced patent pool in March 2019



Streaming Media Magazine

https://bit.ly/codec_soup

Moscow State University

http://bit.ly/MSU_codec_2021

Known Royalty Cost

- Status: AOMedia says open-source/royalty free
 - Patent defense fund but no indemnification
 - Sisvel has an AV1 patent pool with multiple licensees
- Royalty uncertainty detracted from AV1 deployment
 - Joe Inzerillo, then CTO of BAMTech (now Disney), "serious companies" shouldn't waste time with a "free" technology that ultimately is unproven legally."
 - <u>http://bit.ly/inzerillo_av1</u>
 - Robert J.L. Moore patent attorney It's telling, I think, that AOM doesn't indemnify AV1 implementers against patent liability. If Google actually thought they had secured the rights implementers need, they would offer implementers indemnity.
 - <u>http://bit.ly/moore_indemnity</u>

Known Royalty Cost

Consumer Display Devices

Key Takeaways

- Royalties on display/non-display
- No current content royalties

Minimum Commitment threshold (no. of units)	Maximum Commitment threshold (no. of units)	Applicable royalty rate per unit
1	100,000	EUR 0.168
100,001	1,000,000	EUR 0.156
1,000,001	25,000,000	EUR 0.144
25,000,001	75,000,000	EUR 0.132
75,000,001 or above	unlimited	EUR 0.120

Consumer Non-Display Devices

Minimum Commitment threshold (no. of units)	Maximum Commitment threshold (no. of units)	Applicable royalty rate per unit
1	20,000	EUR 0.056
20,001	200,000	EUR 0.052
200,001	5,000,000	EUR 0.048
5,000,001	14,000,000	EUR 0.044
14,000,001 or above	unlimited	EUR 0.040

http://bit.ly/Sis_AV1

Rich Parents – AV1 – Alliance for Open Media

Other Content Viewing Platforms

amazon fire TV

Étv

 $\langle \mathcal{O} \rangle$

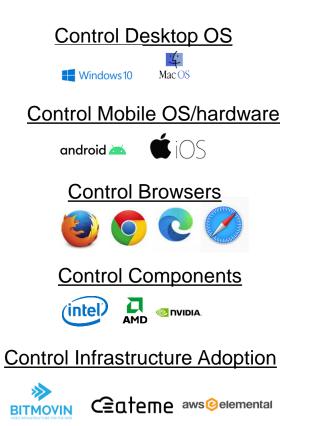
chromecast

- Prominent members include:
 - Desktop and mobile OS Apple, Microsoft, Google
 - Device Apple, Google, Samsung, Amazon
 - Component Intel, NVIDIA, ARM, Ittiam

Dominate Content

You Tube

NETFLIX


prime video

hulu

vimeo

- Content YouTube, Netflix, Amazon, Facebook, Hulu,
- Infrastructure Bitmovin, Ateme, AWS Elemental
- Key point lots of major companies pushing for AV1 to succeed

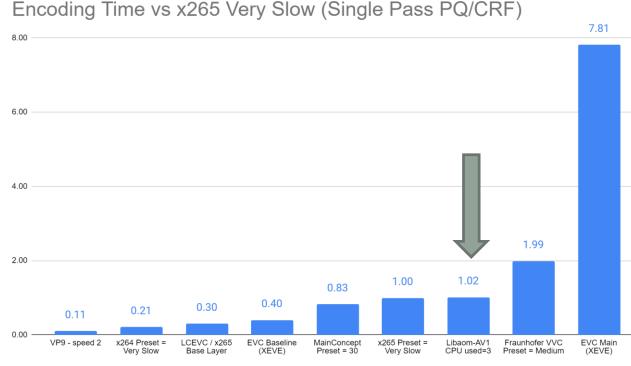
SAMSUNG

AV1 Enjoyed a Ton of Industry Support

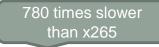
- Accelerated deployment perhaps faster than otherwise
 - YouTube deployed when encoding times were glacial
- Held back competing codecs; particularly HEVC
 - No support in Chrome
 - Initial support in Edge; later reversed
- Chrome decision is monumental
 - "Part of the argument for AV1 was that HEVC was not workable in its use cases, so now that is seemingly no longer the case."
 - From "Chrome Plays HEVC. What Does It Mean?"

Producibility - Software

Device specifications


 Device name
 DESKTOP-E13MMP4

 Processor
 Intel(R) Core(TM) i7-3770 CPU @ 3,40GHz
 3,40 GHz


 Installed RAM
 16.0 GB (15.9 GB usable)
 16.0 GB (15.9 GB usable)

- About the same as x265
 - This is FFmpeg/libaom-AV1
 - SVT-AV1 will be much, much faster

AV1's Performance Journey

	Encoding Time (seconds)	Times Real Time
AV1	226,080	45,216
x265	289	58
LibVPx	226	45
x264	18	4

August 2018 bit.ly/AV1_firstlook ~2x slower than x265

10-second segments of Football and Freedom clips	Encoding Time	Bitrate	VMAF
AV1 Codecs as Tested			
SVT-AV1 - cpu-used 2	0:11:31	1823	88.70
AOMedia aomenc	0:10:27	1821	88.90
FFmpeg libaom	0:08:37	1826	88.68
Visionular	0:04:59	1774	88.61
Other Codecs as Tested			
x265 - veryslow	0:04:57	1843	86.01
x264 - veryslow	0:00:23	1890	75.60
For Reference			
x265 - slow	0:00:45	1837	84.39
SVT-AV1 - cpu-used 7	0:01:46	1893	84.66

September 2020 bit.ly/av1_comps About the same as x265

Codecs and Encoders	Time	Compared to x265	Times Real Time
x264 Preset = Very Slow	0:02:19	0.21	7
LCEVC / x265 Base Layer	0:03:19	0.30	10
x265 Preset = Very Slow	0:11:03	NA	33
MainConcept Preset = 30	0:09:07	0.83	27
Libaom-AV1 CPU used=3	0:11:15	1.02	34
Fraunhofer VVC Preset = Medium	0:22:01	1.99	66
EVC Baseline (XEVE)	0:04:27	0.40	13
EVC Main (XEVE)	1:26:19	7.81	259

December 2021 bit.ly/codec_soup

Encoding Performance – Average for 10 seconds

SVT-AV1

Preset	Time (10 seconds)
0	0:53:35
1	0:27:31
2	0:15:46
3	0:03:48
4	0:01:38
5	0:00:57
6	0:00:29
7	0:00:19
8	0:00:12
9	0:00:10
10	0:00:08
11	0:00:06
12	0:00:05

Libaom- AV1

Preset	Time (10 seconds)
0	3:24:33
1	0:53:47
2	0:18:58
3	0:06:29
4	0:04:24
5	0:02:12
6	0:01:26
7	0:01:26
8	0:01: <mark>0</mark> 6

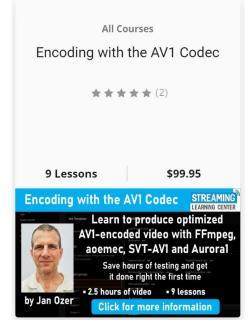
.15x Real-time

Single file Real-time

FFmpeg Command Strings

Single Pass VBR

ffmpeg -y -i input.mp4 -c:v libaom-av1 -b:v 3000k -g 60 keyint_min 60 -cpu-used 8 -auto-alt-ref 1 -threads 4 -tilecolumns 1 -tile-rows 0 -row-mt 1 -lag-in-frames 25 output AV1.mkv


Two-Pass VBR

ffmpeg -y -i input.mp4 -c:v libaom-av1 -b:v 1500K -g 60 keyint_min 60 -cpu-used 8 -threads 8 -tile-columns 1 -tile-rows 1
-row-mt 1 -pass 1 -f matroska NUL & \

ffmpeg -y -i freedom_10.mp4 -c:v libaom-av1 -b:v 1500K -maxrate
3000K -g 60 -keyint_min 60 -cpu-used 4 -threads 8 -tile-columns 1
-tile-rows 1 -row-mt 1 -pass 2 output.mkv

AV1 Encoding Resources

- Course
- Articles:
 - <u>Choosing the Optimal Preset for AV1</u>
 <u>Encoding (and Other Questions)</u> –
 Streaming Learning Center
 - <u>AV1 Video Encoding Guide</u> FFmpeg Wiki
 - <u>AV1 Has Arrived: Comparing Codecs from</u> <u>AOMedia, Visionular, and Intel/Netflix,</u> Streaming Media Magazine

https://bit.ly/slc_encode_av1

Cloud Pricing – 6-40x H.264

	AWS	Azure	Bitmovin	Brightcove	Tencent
Highest base charge (30 fps/1080p)	\$0.042	\$0.03	~\$0.02	\$0.08	\$0.0215
HEVC multiplier/cost	8x - \$0.336	~5x - \$0.161	2x - ~\$0.04	None -\$0.08	2.3x - \$0.0494
VP9	~4x - \$0.1575	Not supported	2x - ~\$0.04	None (\$0.08)	Not supported
AV1	~41x - \$1.728	Not supported	10x - ~\$0.20	Supported, no price	6.7x - \$0.1445
	go.aws/37lbODX	bit.ly/Azure_pricing	bit.ly/BM_pricing	bit.ly/BC_pricing	bit.ly/TC_pricing

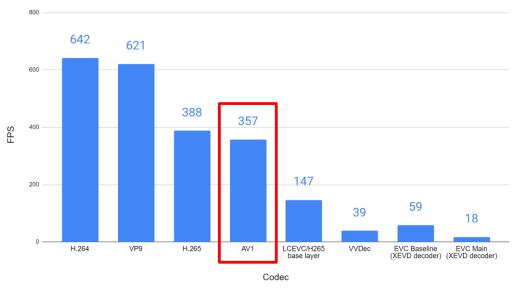
Producibility

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Producibility							
- Encoder support	Ubiquitous	Ubiquitous	Near Ubiquitous	Nascent	Some	Open source	Open source
- Live software/hardware	Yes/Yes	Yes/Minimal	Yes	Min/Min	Yes	No/No	No/No

• AV1 – Multiple

- NETINT first hardware transcoder
- Later entrants
 - NVIDIA
 - Intel
 - Xilinx coming

Playability - Performance


• Where can the codec play

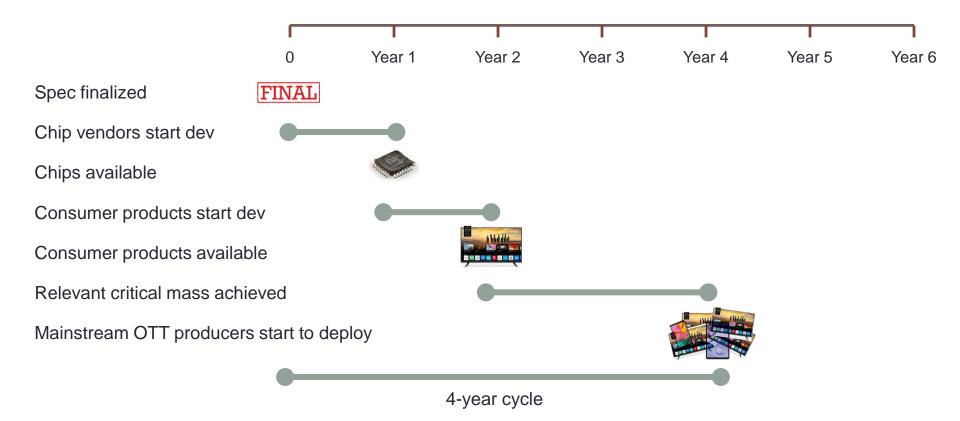
- Does it need hardware acceleration?
 - Runs in software very effectively on very old CPU
- Not supported in hardware on any mobile platforms
 - Different story for mobile

Device specifications

Device name	DESKTOP-E13MMP4
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 3.40 GHz
Installed RAM	16.0 GB (15.9 GB usable)


Software Playback Frames Per Second

Playability – Compatibility - Computer and Mobile Browser Support


	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	388 fps	621 fps	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser support	22.91%	97.64	73.2%	Not listed	Not listed	Not listed	Not listed
- Browser workaround	No	NA	NA	No	Yes	No	No

- CanIUse shows compatibility percentage
 - Very good browser support (most except for Apple)
 - · Was a key strength vs. MPEG codecs
 - Chrome now plays HEVC

https://caniuse.com/?search=av1

Codec Deployment – Hardware / Best Case

Chip Support – Mobile

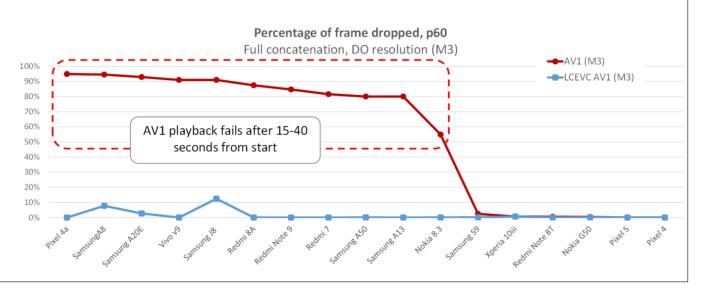
HEVCVP9AV1VCCLCEVCEVC BaselineEVC MainMobile/Computer Device SupportFully supported in most devices• AMD • ARM • HiSilicon • Intel • MediaTek • MediaTek • NVIDIA • Qualcomm• AMD • Broadcom • Intel • MediaTek • Samsung • Google • Samsung • QualcommNone foundNANone foundNone found								
Device Supportsupported in most devices• ARM · HiSilicon · Intel · MediaTek · NVIDIA · Samsung• Amphion · Broadcom · Intel · MediaTek · Nvidia · Rockchip · Samsung · Samsung• Amphion · Broadcom · Intel · Nvidia · Rockchip · Samsung · Samsung		HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
	-	supported in most	 ARM HiSilicon Intel MediaTek NVIDIA Qualcomm 	 Amphion Broadcom Intel MediaTek Nvidia Rockchip Samsung Google Samsung 	None found	NA	None found	None found

- Most data from Wikipedia
 - Lots of announced chip level support

AV1 – Mobile Deployments

- Apple
 - No hardware or software support for AV1
- Android
 - Software support in Android OS and browsers since Android 10.0
 - bit.ly/and_supportedmedia
 - General hardware support dragging
 - Focus on software playback
 - Hopeful for 720p60 on majority of Android devices by 2024
 - Netflix has been distributing AV1 to Android phones since 2/2020
 - bit.ly/nf_and_av1

AV1 Decoder Forecast


- Originally expected AV1 HW decoders broadly deployed in mobile devices by ~2022
- Chipset manufacturers have slipped roadmap. 2026-2027 likely
- dav1d and gav1 SW decoders will have to fill the gap
- Work is underway to improve the decoder performance of both sw decoders
- Hopeful for 720p60 for majority of Android devices by 2024

https://youtu.be/3qL5FdEBiGA

Software Playback Performance

- From V-Nova presentation
- 1080p60 AV1 fails on older devices
 - LCEVC/AV1 plays smoothly
- Point? Mobile devices still iffy without hardware acceleration
 - 720p60 appears to be the target for most producers
 - LCEVC/AV1 also significantly extended the battery life of phones

Real-life device results, 1080p60 (Dav1d decoder)

https://bit.ly/LCEVC_SVT

Meta AV1 Mobile Deployments

Current Delivery Status

iOS

8 bit AV1 (up to 1080p30): iPhone 8 and beyond.

10 bit AV1 HDR (up to 1080p30): iPhoneX and beyond

High percentage of the Facebook Reels and Instagram Reels videos watched on iPhone are AV1

Android

8 bit AV1 (up to 1080p30): selected mid-range to high-end Android phones

Relative lower watch time but growing!

AV1 is delivering real value to Meta's users!

 Meta is benchmarking Android phones to determine which to send AV1 to

AV1 vs HEVC on Android

<u>AV1</u>

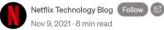
- Pros:
 - Supported by OS
 - Supported by Chrome
 - No content royalties
- Cons
 - Software player
 - Dropped frames
 - Drains batter life
 - No browser support for iOS

HEVC

• Pros:

- Supported by OS
- Supported by Chrome (10/22)
- No content royalties
- Hardware player on most premium models
- Full support (browser and OS) on iOS
- Cons

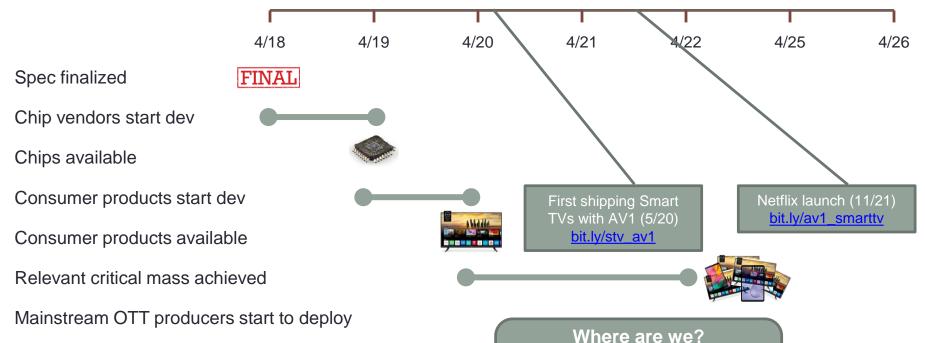
• ?


Chip Support –TV

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
TV Chipsets	Fully supported in most living room devices with HDR	 Amlogic Imagination MediaTek RealTek 	 Allegro Amlogic Amphion Broadcom LG MediaTek Realtek Rockchip Samsung 	AllegroMediaTek			
			HDR 10+ support No Dolby Vision	<u>Oplus</u>			

Netflix

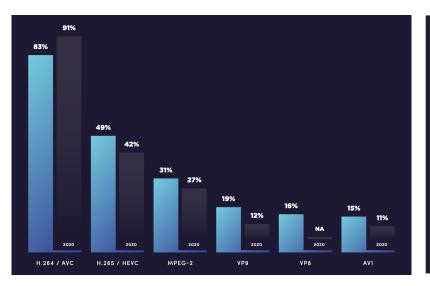
- Initial distribution of AV1 to smart TVs does not support HDR
- Assume that most premium content publishers won't make same decision without HDR
 - At least for HDR content

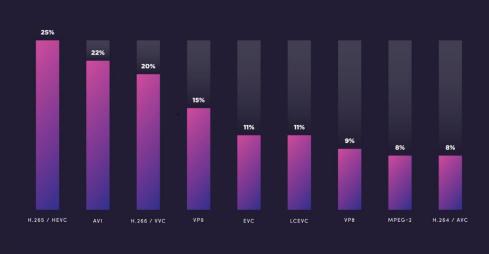

Bringing AV1 Streaming to Netflix Members' TVs

Next Steps

Our initial launch includes a number of AV1 capable TVs as well as TVs connected with PS4 Pro. We are working with external partners to enable more and more devices for AV1 streaming. Another exciting direction we are exploring is AV1 with HDR. Again, the teams at Netflix are committed to delivering the best picture quality possible to our members. Stay tuned!

Codec Deployment – AV1 – Smart TVs

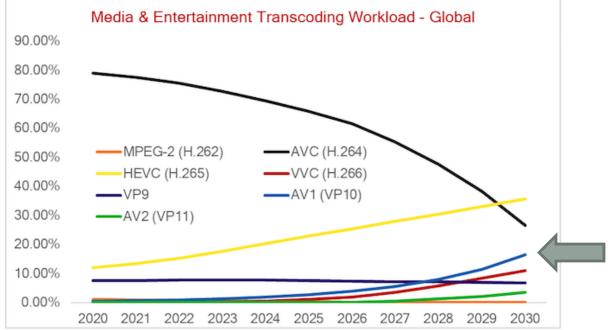



~ 12 months behind. AV1 hits mainstream in mid 2023 (but only after HDR is available)

Timing of Mainstream Adoption

				1			
	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	388 fps	621	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser	2022/23	Now	Now	Never	Never	Never	Never
- Browser workaround	NA	NA	NA	\$\$\$\$	Yes	?	?
- Mobile - hardware	Now	Now	2024+	2025+	NA	Not on radar	Not on radar
- Mobile - software	NA	NA	Caution	Stakeholders	Today	Not on radar	Not on radar
- Smart TV/STB	Ubiquitous	Ubiquitous	Mid 2023	Mid - 2025	Software-only	Not on radar	Not on radar

Third-Party Predictions



- 15% currently using AV1
- Up from 11% in 2020

22% plan to deploy in 2022

Bitmovin - Bitmovin Video Developer Report

Third-Party Predictions

 Rethink TV – Very little AV1 usage through 2025

http://bit.ly/rethink_codec

Versatile Video Coding (VVC) - 2022 Perspective

- About VVC
- Quality
- Known royalty
- Unique selling proposition
- Rich parents (key stakeholders)
- Producibility
- Playability

Should be 10:45

VVEnCapp Command Strings

Windows executables: http://forpub.s3.amazonaws.com/vvenc_vvdec_bin.zip

^ Name	Date modified	Туре	Size
🔳 vvdecapp.exe	5/13/2022 1:26 PM	Application	1,511 KB
📧 vvencapp.exe	5/13/2022 1:26 PM	Application	2,779 KB
vvencFFapp.exe	5/13/2022 1:26 PM	Application	2,788 KB

https://github.com/fraunhoferhhi/vvenc

VVC Workflow

1. Convert source to Y4M, which is YUV with metadata

ffmpeg -y -i input.mp4 -pix_fmt yuv420p -vsync 0 input.yuv

2. Encode with vvencapp (single-pass)

vvencapp -i input.yuv -s 1920x1080 -c yuv420 -r 30 --preset fast --qp 28 --qpa 0 ip 64 -t 4 -o output_vvc_28.266

3. Decode to YUV with vvdecapp

vvdecapp -b output_vvc_28.266 -o output_vvc_28.yuv

VVEnCapp Command Strings

Two-Pass VBR

vvencapp.exe -i input.yuv -c yuv420/yuv420_10 -s WxH --fps FRN[/FRD] -o output.266 --preset medium -b R -p 2 -rs 2 -rt cra cre

Explanation:

-i input.yuv: specifies your input data, can also be a Y4M file

-c yuv420/yuv420_10: specifies if your input is 8 or 10 bit (can be skipped if using Y4M)

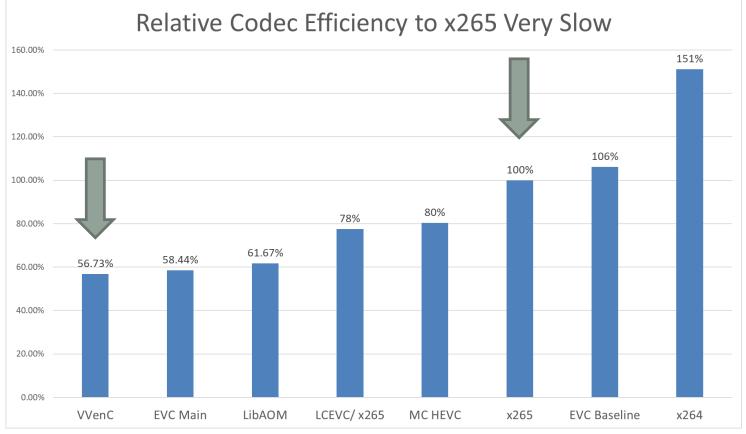
-s WxH: specifies the dimensions of your input (can be skipped if using Y4M)
--fps FRN[/FRD]: specifies the frame-rate of your input, can be either an integer (e.g. 24, 29, 60), or a fraction (e.g. 60000/1001) (can be skipped if using Y4M)
-o output.266: specifies the output bitstream

--preset medium: a commercially viable preset. You could also use fast.

-b R: specifies the target bitrate R, the encoder also now understand postfixes: M, Mbps, K, kbps

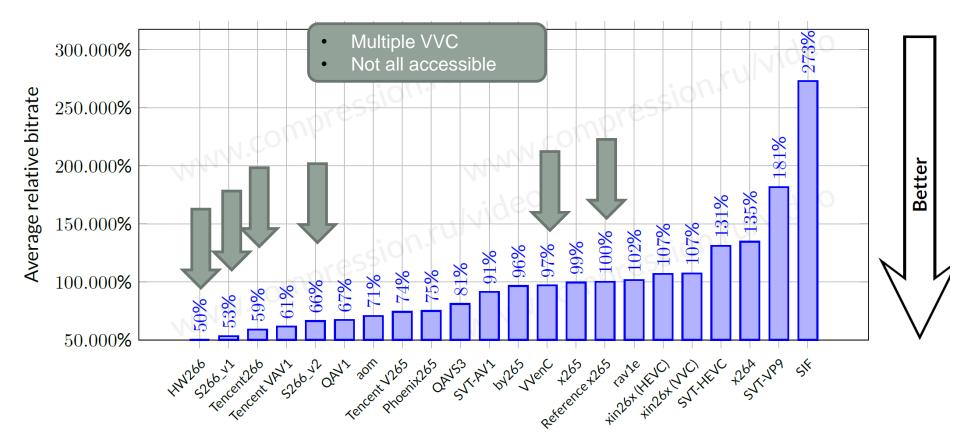
-p 2: use two-pass encoding

-rs 2: use a two-second intra period (you can also use -ip X instead if you want to specify the intra-period in frames instead of seconds)


-rt cra_cre: use an open GOP configuration compatible with ABR streaming.

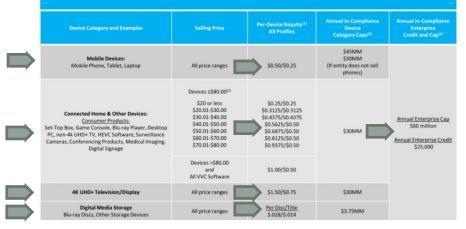
About – VVC/H.266

- Standards-based codec
 - MPEG/ITU Published July 6, 2020
- Typical MPEG codec (successor to HEVC/H.264)
 - Dozens of contributors
 - Five-year development cycle
 - Royalty-bearing
- Key goals
 - Best possible quality (irrespective of complexity)
 - Simpler licensing structure than HEVC



Streaming Media Magazine

https://bit.ly/codec_soup


Moscow State University

http://bit.ly/MSU_codec_2021

Known Royalty Cost - VVC

VVC-Only Platform License - Royalty Rate Structure for Licensees In-Compliance with Trademark Discount, Effective January 1, 2022

Access Advance

- Multi-Codec Bridging Agreement ("MCBA") for companies that license both VVC and HEVC
- "Providing an effective 45% discount"
- Pool has signaled they may be willing to work with companies regarding HEVC/VVC in free software, but nothing definitive yet

bit.ly/vvc_pools

	De minimus	Royalty	Annual Cap
Hardware/paid software	100,000 units	\$0.20	\$30 million
VVC free software	1,000,000 units	\$0.05	\$8 million

• MPEG LA

- Recently waived royalties on software (subject to some conditions)
- Granted 25% discount for new licensees

VVC - USPs

Cutting the bitrate with Versatile Video Coding

The development of video compression will be key to enabling tomorrow's Ultra HD (8K resolution), VR/AR and 360° video technologies. Below, we follow the progress of the Versatile Video Coding standard which, when finalized in 2020, is expected to reduce the bitrate by roughly half.

JUL 18, 2019 | 🕒 1 min.

Per Fröjdh Director of International Standards

CATEGORY

Research

HASHTAGS

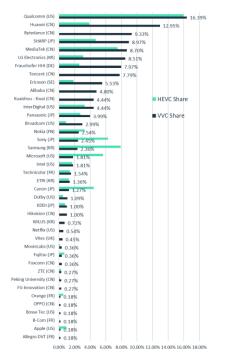
#VVC #MPEG #Bitrate

VR/AR and 360 features

VVC - USPs

Apple Glasses

Apple is rumored have a secret team of hundreds of employees working on virtual and augmented reality projects.


By MacRumors Staff on February 14, 2022

bit.ly/3s8rilK

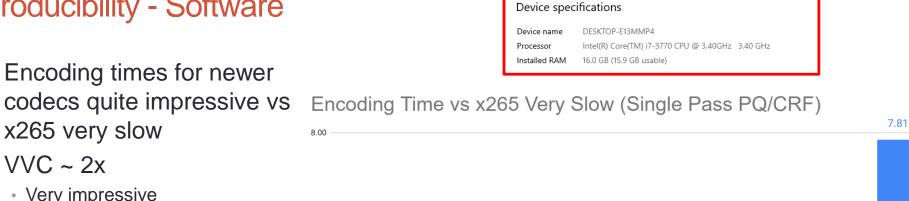
- VR/AR and 360 features
- Apple is VVC patent owner and recently <u>bought more</u> VVC patents – speculation is that patents were for Apple Glasses
- These features could give VVC an early advantage in these markets

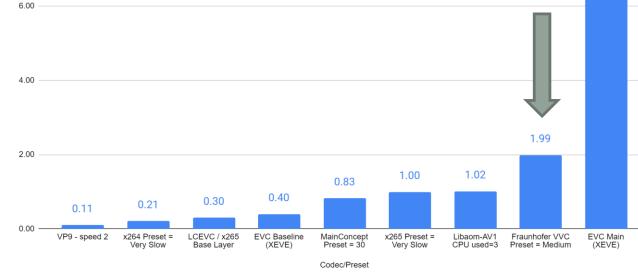
Rich Parents – VVC

- Most of the early software playback trials are VVC patent owners
 - · Bytedance (TikTok), Kuaishou/Kwai, TenCent

bit.ly/VVC POs

		Chip	Product	Streaming	Infrastructure	Technology
Patent Owner	Perc.	Vendor	Mfgr	Publisher	Provider	Provider
Qualcomm	16.39%	Yes				
Huawei	12.95%		Yes			
				TikTok/		
Bytedance	9.33%			Toutiao		
Sharp	8.97%		Yes			
MediaTek	8.70%	Yes				
LG Electronics	8.51%		Yes			
Fraunhofer	7.97%					Yes
Tencent	7.79%			Tencent QQ	Yes	
Ericsson	5.53%				Yes	
Alibaba	4.80%				Yes	
InterDigital	4.44%					Yes
				Video		
Kuaishou - Kwai	4.44%			sharing		
Panasonic	3.99%		Yes			
Broadcom	2.99%	Yes				
Nokia	2.54%		Yes			
Sony	2.45%		Yes			
Samsung	2.36%		Yes			
Intel	1.81%	Yes				
Microsoft	1.81%		Yes	Yes		
Technicolor	1.54%				Yes	
ETRI	1.36%					Yes
Canon	1.27%		Yes			
Dolby	1.09%				Yes	
Hikvision	1.00%		Yes			
KDDI	1.00%				Yes	
WILUS	0.72%					Yes
Netflix	0.54%			Yes		
Vitec	0.45%		Business			
MovieLabs	0.36%					Yes


- Early chip support
 - MediaTek
 - Allegro
- Close to matching AOM in coverage and heft (nice parents to have)


Producibility - Software

 Encoding times for newer x265 very slow

8.00

- VVC ~ 2x
 - Very impressive

Cloud Pricing

	AWS	Azure	Bitmovin	Brightcove	Telestream
Highest base charge (30 fps/1080p)	\$0.042	\$0.03	~\$0.02	\$0.08	\$0.02
HEVC multiplier/cost	8x - \$0.336	~5x - \$0.161	2x - ~\$0.04	None -\$0.08	4x - \$0.08
VP9	~4x - \$0.1575	Not supported	2x - ~\$0.04	None (\$0.08)	4x - \$0.08
AV1	~41x - \$1.728	Not supported	10x - ~\$0.20	Supported, no pricing	Not supported
VVC	Not supported	Not supported	Not supported	Not supported	Not supported
	go.aws/37lbODX	bit.ly/Azure_pricing	bit.ly/BM_pricing	bit.ly/BC_pricing	bit.ly/TS_pricing

Producibility – Hardware

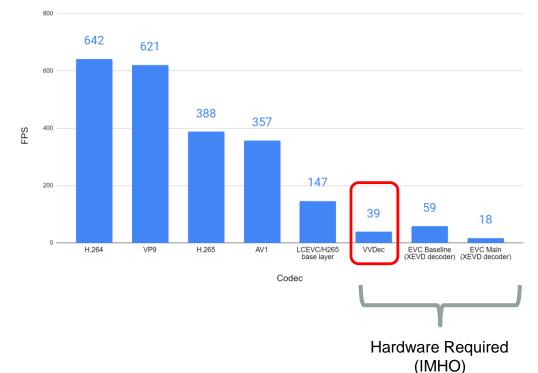
	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Producibility							
- Encoder support	Ubiquitous	Ubiquitous	Near Ubiquitous	Nascent	Some	Open source	Open source
- Live software/hardware	Yes/Yes	Yes/Minimal	WebRTC/Min	Min/Min	Yes	No/No	No/No

 VVC - Ateme announced first live VVC encoder ATEME and The Explorers to Launch the First OTT Channel Promoting VVC

ueil / Presse / ATEME and The Explorers to Launch the First OTT Channel Promoting WC

PARIS, DENVER, SINGAPORE, SYDNEY, NOVEMBER 10, 2020 - ATEME, the leader in video delivery solutions for Broadcast, Cable TV, DTH, IPTV and OTT, and <u>The Explorers</u>, a collaborative global media platform, announced launching, the first OTT live channel which promotes the beauty of the world's landscapes via the next gen codec, VVC. The channel will be hosted from Tuesday, November 10th to Friday, December 11th on Akamai CDN with link available at innovation@ateme.com.

Playability - Performance


• Where can the codec play

 IMHO - VVC is a "hardware codecs" that will require hardware decoding for mass deployment even on computers

Device specifications

Device name	DESKTOP-E13MMP4	
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 3.40 GHz	2
Installed RAM	16.0 GB (15.9 GB usable)	

Software Playback Frames Per Second

VVC Trials – VVC Stakeholders

Results for Android Platform

• Kwai UGC Sequences

	VTM-11.0	K266Dec				Speedup			
# threads	1	1	2	4	8	1	2	4	8
Huawei P40	26.66	97.49	173.85	270.26	178.75	4.82	8.59	13.35	8.83
Oppo R17	10.59	40.95	78.40	100.52	116.97	5.17	9.89	12.68	14.76
VIVO Y93s	5.82	19.06	35.28	60.10	56.63	4.39	8.12	13.83	13.03

<u>link</u>

- What's the point?
 - Their players could be much more efficient
 - Normally, implementors require hardware support

Performance on iPhone13

		BVC (CPU+GPU) vs. VTM-11.0								
		RA								
	VTM-11.0 (fps)	BVC (CPU+GPU)(fps)		s	peedup rati	0			
		T-1	T-2	T-4	T-1	T-2	T-4			
class A1	2.2	39.5	60.7	67.7	17.6	27.2	30.3			
class A2	2.0	30.8	48.8	54.1	15.3	24.2	26.8			
class B	9.8	144.3	205.0	217.7	14.8	21.0	22.3			
class C	53.5	473.3	563.7	630.3	8.9	10.5	11.8			
class D	206.6	970.5	1043.5	1074.2	4.7	5.1	5.2			
class F	43.6	444.1	527.6	616.0	10.2	12.1	14.1			

For 4K 8-bit CTC bitstreams

- Achieve 35 fps with single thread on average
- 15x faster than the VTM11.0 reference decoder with single thread

<u>link</u>

As with AV1, stakeholders could deploy
 VVC much earlier than a third-party

ByteDance

- company
- This will prime the pump, accelerating hardware/software support and additional deployments

Playability – Compatibility - Computer and Mobile Browser Support

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	388 fps	621 fps	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser support	22.91%	97.64	73.2%	Not listed	Not listed	Not listed	Not listed
- Browser workaround	No	NA	NA	No	Yes	No	No

- CanIUse shows compatibility percentage
 - VVC not yet listed

https://caniuse.com/?search=VVC

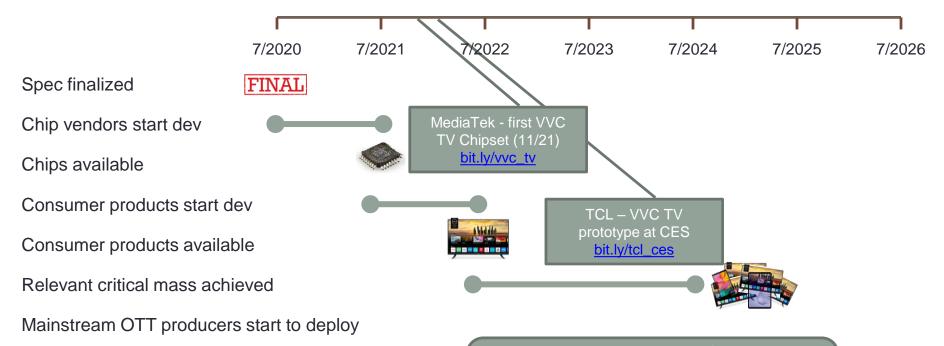
Chip Support – Mobile

Mobile/Computer Device SupportFully supported in most• AMD • ARM • HiSilicon• AMD • Amphion • BroadcomNone foundNANone foundNone found								
Device Support supported in most • ARM • Amphion • HiSilicon • Broadcom		HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
 MediaTek MediaTek NVIDIA Qualcomm Samsung Google Samsung Qualcomm 	-	supported	 ARM HiSilicon Intel MediaTek NVIDIA Qualcomm 	 Amphion Broadcom Intel MediaTek Nvidia Rockchip Samsung Google Samsung 	None found	NA	None found	None found

Most data from Wikipedia

 No announced VVC support for mobile SOCs

Mobile Deployments


• VVC

- Stakeholders may attempt to play software-only
- Most other publishers will wait for hardware

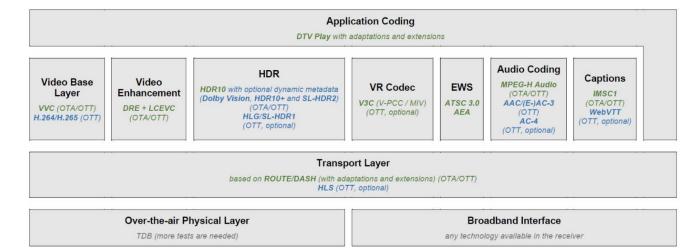
Chip Support –TV

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
TV Chipsets	Fully supported in most living room devices with HDR	 Amlogic Imagination MediaTek RealTek 	 Allegro Amlogic Amphion Broadcom LG MediaTek Realtek Rockchip Samsung 	AllegroMediaTekRealTek			

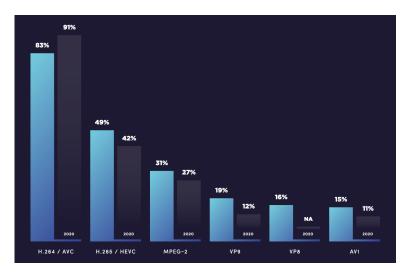
Codec Deployment – VVC – TV/Mobile Hardware

Where are we? ~ 12 – 24 months behind; Disappointing chip support delays mainstream adoption – mid 2025/2006

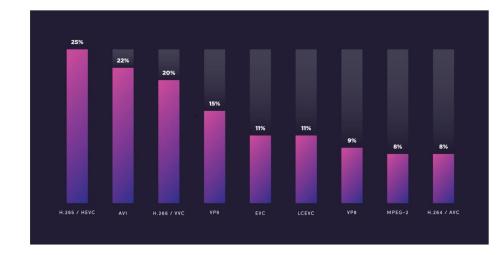
Other Factors



 VVC added to DVB tuner specification

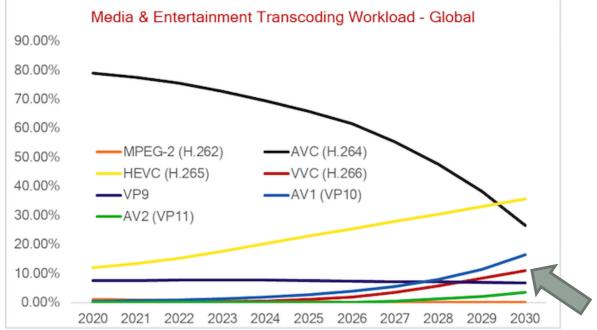

 From the press release – "Having completed the addition of VVC on schedule, the group is continuing to work intensively, with the AVS3 codec as the current focus and AV1 next in line for evaluation."

Other Factors



- VVC and LCEVC were included in Brazil's recent <u>TV 3.0 project</u> (Above)
- Should advance adoption of both codes

Third-Party Predictions


No existing usage

- 20% plan to deploy VVC in 2022
 - This includes entire ecosystem not just content publishers
 - So, CDN, encode, decode, etc.

Bitmovin - Bitmovin Video Developer Report

Third-Party Predictions

- Rethink TV Pretty bullish on VVC, but still only 10% by 2030
 - Dwarfed by HEVC, H.264, and AV1

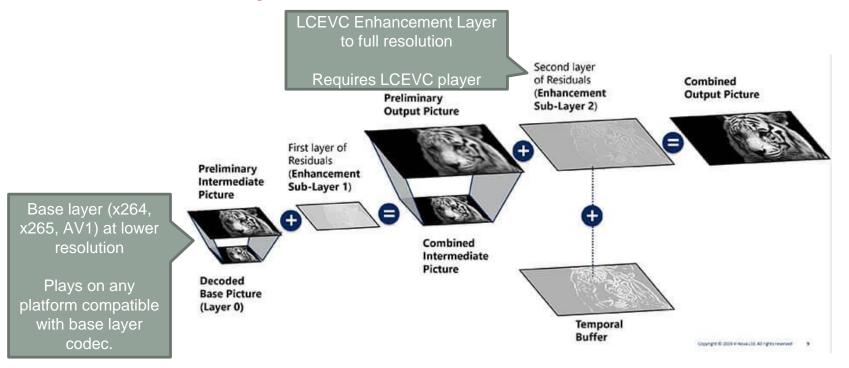
http://bit.ly/rethink_codec

Timing of Mainstream Adoption

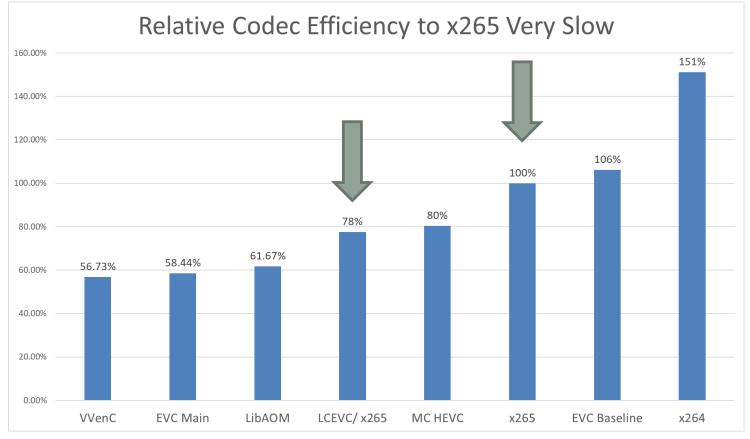
	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	388 fps	621	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser	2022/23	Now	Now	Never	Never	Never	Never
- Browser workaround	NA	NA	NA	\$\$\$\$	Yes	?	?
- Mobile – hardware	Now	Now	2024+	2025+	NA	Not on radar	Not on radar
- Mobile - software	NA	NA	Caution	Stakeholders	Today	Not on radar	Not on radar
- Smart TV/STB	Ubiquitous	Ubiquitous	Mid 2023	Mid - 2025	Software-only	Not on radar	Not on radar

LCEVC – 2022 Perspective

- About LCEVC
- Quality
- Known royalty
- Unique selling proposition (USP)
- Rich parents key stakeholders
- Producibility
- Playability


Should be 11:15

About - LCEVC


- Low Complexity Enhancement Video Coding
 - MPEG/ITU codec (MPEG-5)
 - Formalization of V-Nova Perseus Technology
 - Primary IP contributor
 - Published October 2020
- Goals
 - Low complexity (green)
 - Simple licensing structure
- Enhancement codec
 - Base layer existing codec
 - Enhancement layer LCEVC

LCEVC Description – Enhancement Codec

Streaming Media Magazine

https://bit.ly/codec_soup

LCEVC Performance Varies with Base Layer

- My findings:
 - LCEVC/x264 as base layer 40% more efficient than x264
 - LCEVC/x265 as base layer 22% more efficient than x265
 - LCEVC/AV1 as base layer 12% more efficient than AV1
 - Other benefits:
 - 3-4x faster encoding speed
 - Equal or more efficient playback

LCEVC Performance Varies with Base Layer

- Evaluation of MPEG-5 Part 2 (LCEVC) for Live Gaming Video Streaming Applications
 - VMAF
 - LCEVC enhancing x264 (medium) BD-rate-VMAF of -42.14% over x264
 - LCEVC enhancing x265 (veryfast) BD-rate-VMAF of -38.86% for x265
 - LCEVC -x264 (medium) outperforms x265 (veryfast) with a BD-rate-VMAF of -13.64%
 - PSNR while LCEVCx264 outperforms x264, x265 outperforms LCEVC-x265

LCEVC Performance Varies with Base Layer

Overview of the Low Complexity Enhancement Video Coding (LCEVC) Standard

- 46% for UHD and 28% for HD for LCEVC enhancing AVC;
- 31% for UHD and 24% for HD for LCEVC enhancing HEVC;
- An overall benefit for LCEVC enhancing EVC and VVC

Compared to SVT-AV1 Encode/AV1 decode

Enhancing SVT-AV1 with LCEVC to improve quality-cycles trade-offs and enhance sustainability of VOD transcoding

- Same quality as SVT-AV1 at:
 - 88% lower encoding time (VMAF)
 - 46% lower encoding time (VMAF-NEG)
 - 26% lower encoding time (SSIM)

- Saves battery life on decode
 - Galaxy S9 33%
 - Pixel 5 41%
 - Nokia 8.3 33%

Key Benefits

- Backwards compatibility
 - X264 layer will play even if player not LCEVC compatible
- Bitrate efficiency
 - LCEVC with base layer always more efficient than base layer at full rez
 - LCEVC with x265 base more efficient than x265 at full rez
- Encoding speed
 - LCEVC always encodes faster that base layer at full rez
 - LCEVC with x265 base always encodes faster than x265 at full rez
- Decoding efficiency
 - LCEVC always requires less CPU than base layer at full rez
 - LCEVC with x265 base requires less CPU than x265 base at full rez (assuming no HEVC decode)

Known Royalty Cost - LCEVC

- V-Nova
 - Royalty on content publishers (so the company benefiting pays the royalties)
 - Free for encoding (encoders) and playback (decoders)
 - Different (undisclosed) charges for different business models
 - Examples next page
 - All capped at US\$3.7 million
- Key benefits
 - Should accelerate ecosystem support because decode is free
 - Publisher can make deployment decision for \$3.7 million (use workarounds)
 - VVC deployment could cost \$38 million

Known Royalty Cost - LCEVC

Pricing examples

Subscription streaming service A global SVOD service accessible via multiple devices such as set-top boxes, mobile or smart TVs.

Licence Fees:

Users:

...

USD 3.7mn (cap)

80mn

\$.046/player

(谷)
Y

Ad based streaming service

An ad-based streaming service where users can freely access content.

Users:	
Licence	Fees:

100mn USD 1.8mn

\$.018/player

X

TV Everywhere service

A national broadcaster uses LCEVC to upgrade their 'everywhere TV' service.

Users:	12mn
Licence Fees:	USD 0.2mn

\$.016/player

bit.ly/lcevc_royalty

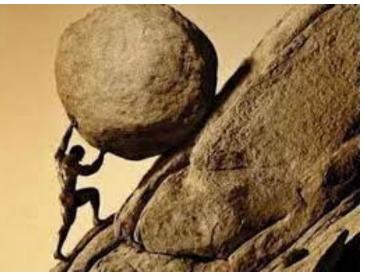
LCEVC - USPs

- Green codec more efficient encode than x265 (with x265 as a base layer)
- Software codec
 - Backwards compatible to base layer codec
 - Plays in software on most platforms (later)
- Point Cloud Compression VR

V-Nova, developer and provider of video compression systems, has been recognised by The Advanced Imaging Society (AIS) Awards Committee for the successful application of its Point Cloud Compression technology, winning a Lumiere Award.

https://bit.ly/LCEVC_pointcloud

V-Nova Point Cloud Compression achieves compression performance that other technologies cannot attain. The resulting 6DoF technology responds accurately to the orientation and position of a VR headset. This allows the viewer to move around freely within the image with 6 degrees of freedom.

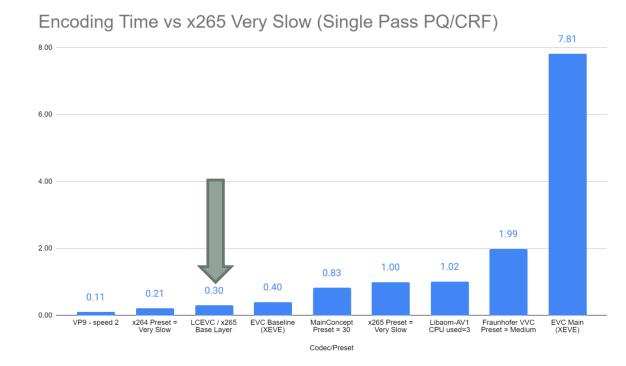

Rich Parents - LCEVC

Some great investors, but way behind the other codecs

- V-Nova has done a fabulous job:
 - Developing the codec
 - Gaining MPEG approval
 - Proving the value proposition
 - Achieving ecosystem support

Rich Parents - LCEVC

Some great investors, but way behind the other codecs


- V-Nova has done a fabulous job:
 - Developing the codec
 - Gaining MPEG approval
 - Proving the value proposition
 - Achieving ecosystem support
- But their effort is Sisyphean compared to other codecs with many more rich parents

Producibility - Software

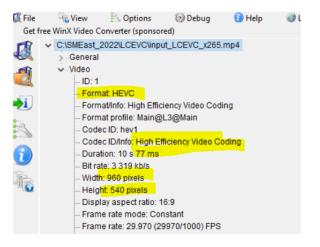
Device specifications

Device name	DESKTOP-E13MMP4	
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz	3.40 GHz
Installed RAM	16.0 GB (15.9 GB usable)	

- LCEVC/x265 as base (.3x)
- Easily capable of live encoding for origination or transcoding

LCEVC Workflow

Windows executables: Contact Guendalina Cobianchi <guendalina.cobianchi@v-nova.com>


LCEVC Workflow

2. Encode with LCEVC-capable version of FFmpeg (one or twopass)

```
ffmpeg -y -i "input.mp4" -g 60 -c:v lcevc_hevc -
base_encoder x265 -r 29.97 -s 1920x1080 -b:v 2800k -
eil_params "preset=veryslow;scenecut=0;min-
keyint=60;frame-
threads=4;residual_mode_priority_enabled=0;temporal_use
_priority_map=0" input_LCEVC_x265.mp4
```

3. Decode to Y4M with LCEVC-capable version of FFmpeg

ffmpeg -vcodec lcevc_hevc -y -i input_LCEVC_x265.mp4 s 1920x1080 input_LCEVC_x265.y4m

Producibility – Hardware

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Producibility							
- Encoder support	Ubiquitous	Ubiquitous	Near Ubiquitous	Nascent	Some	Open source	Open source
- Encoding time	Baseline	Baseline	1.02x	2x	.3x	.4x	7.8x
- Live software/hardware	Yes/Yes	Yes/Minimal	WebRTC/Min	Min/Min	Yes	No/No	No/No

- LCEVC
 - <u>Harmonic</u>
 - Southworks
 - <u>Red5Pro</u>
 - <u>NETINT</u>
 - Many others

V-Nova LCEVC XDE / XSA Ultra-density Video Encoding

- Increase throughput by up to 4x: 4Kp60
 or multiple HD streams per card
- Deliver higher quality at up to 50% lower bitrates
- Simple deployment for existing or new encoding operations

LCEVC and HDR

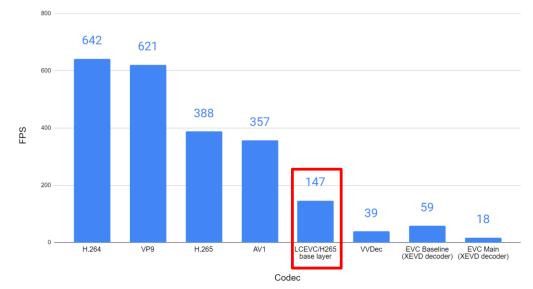
HDR video coding with MPEG-5 LCEVC

Amaya Jiménez-Moreno V-Nova Limited London, UK amaya.moreno@v-nova.com

Rick Clucas V-Nova Limited London, UK rick.clucas@v-nova.com Lorenzo Ciccarelli V-Nova Limited London, UK lorenzo.ciccarelli@v-nova.com

Simone Ferrara V-Nova Limited London, UK simone.ferrara@v-nova.com

https://bit.ly/LCEVC_HDR


Playability - Performance

- Where can the codec play
 - Does it need hardware acceleration?
 - V-Nova throttles playback speed beyond real-time to limit battery usage
 - More efficient than base layer codec

Device specifications

Device name	DESKTOP-E13MMP4	
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 3.40 G	ΞHz
Installed RAM	16.0 GB (15.9 GB usable)	

Software Playback Frames Per Second

LCEVC CPU Consumption

- Decode 60 seconds, record CPU
- Software-only playback
- FPS results suggest that HEVC is about 2.5x more efficient than LCEVC
- These tests show that LCEVC is about the same
- Bottom line: LCEVC should be capable of software-only playback on most devices

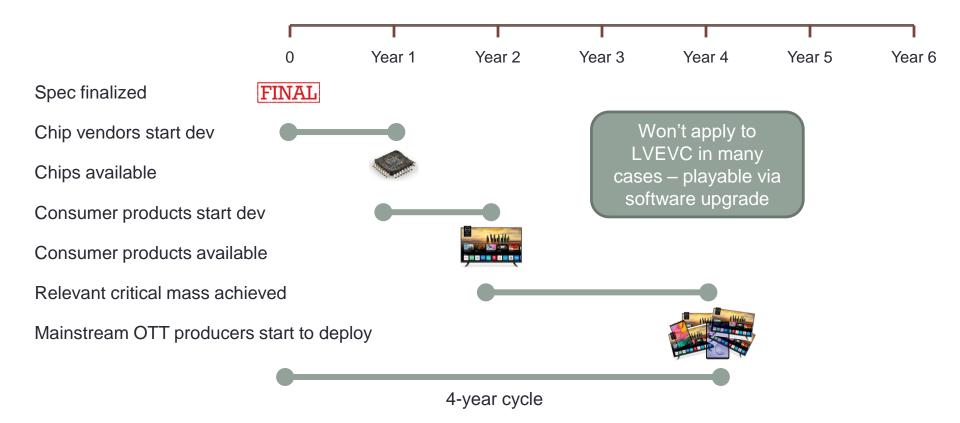
Playability – Compatibility - Computer and Mobile Browser Support

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	388 fps	621 fps	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser support	19.65%	97.1%	74.6%	Not listed	Not listed	Not listed	Not listed
- Browser workaround	No	NA	NA	No	License	No	No
- Browser workaround	No	NA	NA	No	License	No	No

- Not currently supported in any browsers
- Supported in many players
 - Next slide

Browser/OS Workaround - LCEVC

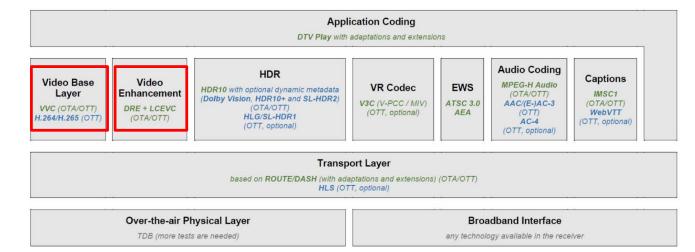
- Choose compatible encoder
 - Harmonic
 - Southworks
 - Red5Pro
 - NETINT
- Choose a compatible player
 - ExoPlayer for Android
 - AVPlayer for iOS
 - Microsoft UWP for Windows
 - Web players like HLS.js, Shaka Player, video.js.
- Contact V-Nova and negotiate license


June 29, 2021 By Streaming Media Editorial Staff Blog

LCEVC: Ready for Primetime

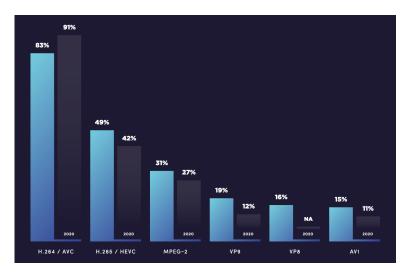
bit.ly/lcevc_primetime

Codec Deployment – Hardware / Best Case

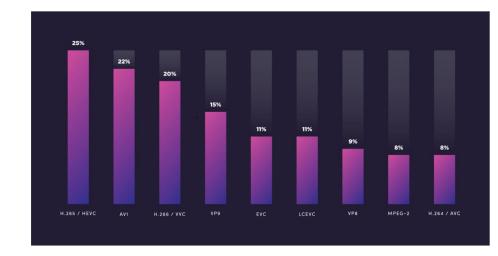

Chip Support – Mobile

HEVCVP9AV1VVCLCEVCEVC BaselineEVC MainMobile/Computer Device SupportFully supported in most devices• AMD · ARM · HiSilicon · Intel · MediaTek · MediaTek · MediaTek · NVIDIA · Qualcomm · Samsung · Google · Samsung · QualcommNone found · ARM · Amphion · Broadcom · Intel · MediaTek · Samsung · Google · Samsung · QualcommNone found · ARM · Amphion · Broadcom · Intel · MediaTek · MediaTek · Samsung · QualcommNone found · ARM · Amphion · Broadcom · Intel · MediaTek · Samsung · Google · Samsung · QualcommNone found · ARM · Amphion · Broadcom · Broadco								
Device Supportsupported in most devices• ARM · HiSilicon · Intel · MediaTek · NVIDIA · Qualcomm · Samsung · Google · Samsung• Amphion · Broadcom · Intel · Nvidia		HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
	-	supported in most	 ARM HiSilicon Intel MediaTek NVIDIA Qualcomm 	 Amphion Broadcom Intel MediaTek Nvidia Rockchip Samsung Google Samsung 	None found	NA	None found	None found

Chip Support –TV

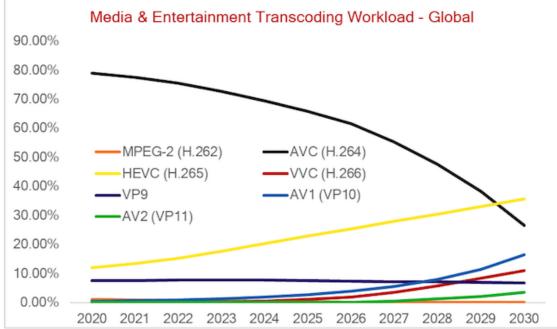

HEVC VP9 AV1 VVC	LCEVC	EVC Baseline	EVC Main
TV ChipsetsFully supported in most living room devices with HDRAmlogic · Imagination · MediaTek · RealTekAllegro · Amlogic · Amlogic · Amphion · Broadcom · LG · MediaTek · Realtek · Realtek · Rockchip · Samsung· Allegro · Allegro · MediaTek			

Other Factors



- VVC and LCEVC were included in Brazil's recent <u>TV 3.0</u> project (Above)
- Should advance adoption of VVC and LCEVC

Third-Party Predictions


• No use in 2021

- 11% plan to deploy LCEVC in 2022
- Probably more infrastructure providers (encoding/players) than publishers

Bitmovin - Bitmovin Video Developer Report

Third-Party Predictions

- Rethink TV LCEVC not separately listed
 - Assumed to be enhancement codec for AV1

http://bit.ly/rethink_codec

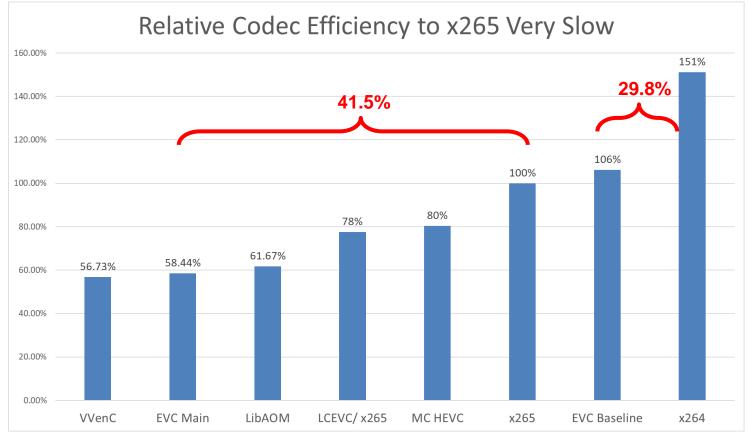
Essential Video Coding (EVC) – 2022 Perspective

- About EVC
- Quality
- Known royalty
- Rich parents (key stakeholders)
- Producibility
- Playability

Should be 11:35

About - EVC

- Standards-based codec
 - MPEG Published May 6, 2020
 - Four contributors (Qualcomm, Huawei, Samsung, Divideon)
- Goals
 - Royalty free component (as alternative to AV1)
 - Simplified licensing structure (as alternative to HEVC)



About - EVC

Two profiles

- Baseline targets H.264
 - Uses technologies with expired patents
 - Supposed to be royalty free
 - ~30% more efficient than H.264
- Main targets HEVC
 - Uses patented technologies from four companies
 - Royalty bearing
 - ~30% more efficient than HEVC

Streaming Media Magazine

https://bit.ly/codec_soup

Common Data Points – vs. x265

	Best VVC	EVC Main	Best AV1	LCEVC/ x265	Other HEVC	EVC Baseline	x264
Streaming Media	~43%	~42%	~38%	~22%	~20%	+~6%	+~51%

Take aways

- EVC Main very efficient in early open-source version ~42% more efficient than x265
- EVC Baseline ~30% more efficient than x264

Known Royalty Cost

	HEVC	VP9	AV1	VVC	LCEVC	EVC
Patent pools	3	1 (disputed by Google)	1 (disputed by AO Media)	2	1	?
Schema	- encoder/decoder - per-unit royalty - annual cap	- decoder - per-unit royalty	- decoder - per-unit royalty	- encoder/ decoder - per-unit royalty - annual cap	 Content royalty (publisher pays) cap 	- Unknown - 2-year window
Learn more:	bit.ly/hevc_3	bit.ly/vp9_pool	bit.ly/av1_pool	bit.ly/vvc_pools	bit.ly/lcevc_royalty	

 EVC – No royalty policy may be slowing potential adoption

Rich Parents - EVC

 Some big companies, but no match for VVC/AOM All three large companies are major VVC patent owners

Producibility - Software

- Encoding times quite impressive vs x265 very slow
 - EVC Baseline (.4x)
 - Rev 1 EVC Main ~8x

Device specifications

Codec/Preset

bit.ly/codec_soup

XEVE Command Strings

Windows executables: http://forpub.s3.amazonaws.com/xeve_xevd.zip

VVC Workflow

Name	Date modified	Туре	Size							
📧 xevd_app.exe	5/13/2022 3:20 PM	Application	424 KB							
xeve_app.exe	5/13/2022 3:20 PM	Application	1,380 KB							
	https://github.com/mpeg5/xeve									

1. Convert source to Y4M, which is YUV with metadata

ffmpeg -y -i Football.mp4 -pix_fmt yuv420p Football.y4m

2. Encode with xeve_app (single-pass)

xeve_app.exe -i input.mp4 -w 1920 -h 1080 -z 30 -o output.evc -r output.yuv --rctype 1 --bitrate 6000 --vbv-bufsize 12000 -v 3 --profile main --preset slow -I 60 --closed-gop --threads 4

3. Decode to YUV with xevd_app

Not needed – yuv output supplied

Producibility – Hardware

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Producibility							
- Encoder support	Ubiquitous	Ubiquitous	Near Ubiquitous	Nascent	Some	Open source	Open source
- Encoding time	Baseline	Baseline	1.02x	2x	.3x	.4x	7.8x
- Live software/hardware	Yes/Yes	Yes/Minimal	WebRTC/Min	Min/Min	Yes	No/No	No/No

. . . A proposal by Samsung, Huawei and Qualcomm forms the basis of EVC.^[8]

Implementations [edit]

. .

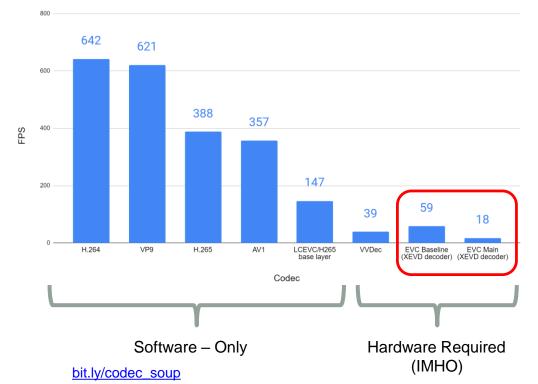
• XEVE (the eXtra-fast Essential Video Encoder) & is self-described as a fast open source EVC encoder. It is written in C99 and supports both the baseline and main profiles of EVC. Its license is a custom 3-clause BSD license.

See also [edit]

-

- MPEG-5 Part 2 / Low Complexity Enhancement Video Coding / LC EVC
- H.266 / MPEG-I Part 3 / Versatile Video Coding / VVC

• AV1


Playability - Performance

- EVC is a "hardware codec" that will require hardware decoding for mass deployment
 - Expect the same aggressive software strategy we saw with VVC from EVC stakeholders

Device specifications

Device name	DESKTOP-E13MMP4	
Processor	Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz 3.40 GHz	
Installed RAM	16.0 GB (15.9 GB usable)	

Software Playback Frames Per Second

Playability – Compatibility - Computer and Mobile Browser Support

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
Playability	388 fps	621 fps	357 fps	39 fps	147fps +	59 fps	18 fps
- Browser support	19.65%	97.1%	74.6%	Not listed	Not listed	Not listed	Not listed
- Browser workaround	No	NA	NA	No	Yes	No	No

 No existing OS or browser support for either EVC profile

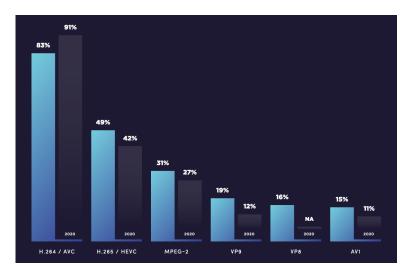
https://caniuse.com/?search=evc

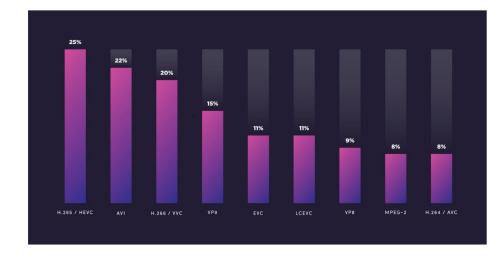
Chip Support – Mobile

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main	
Mobile/Computer Device Support	Fully supported in most devices	 AMD ARM HiSilicon Intel MediaTek NVIDIA Qualcomm Samsung 	 AMD Amphion Broadcom Intel MediaTek Nvidia Rockchip Samsung Google Samsung Qualcomm 	None found	NA	None found	None found	

Crickets here

Chip Support –TV

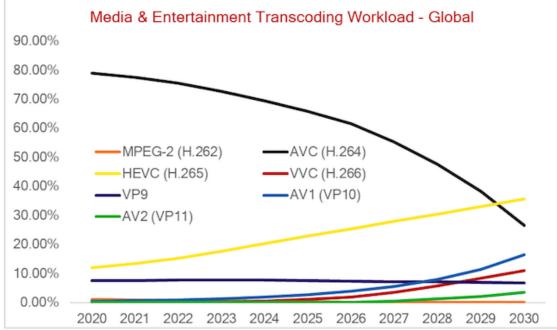

	HEVC	VP9	AV1	VVC	LCEVC	EVC Baseline	EVC Main
TV Chipsets	Fully supported in most living room devices with HDR	 Amlogic Imagination MediaTek RealTek 	 Allegro Amlogic Amphion Broadcom LG MediaTek Realtek Rockchip Samsung 	AllegroMediaTek			


Crickets here

Bottom Line on EVC

- No support other than key stakeholders
 - They've done very little to promote the codec so far
 - Until they do, it'd dead in the water from an implementation perspective

Third-Party Predictions



• No use in 2021

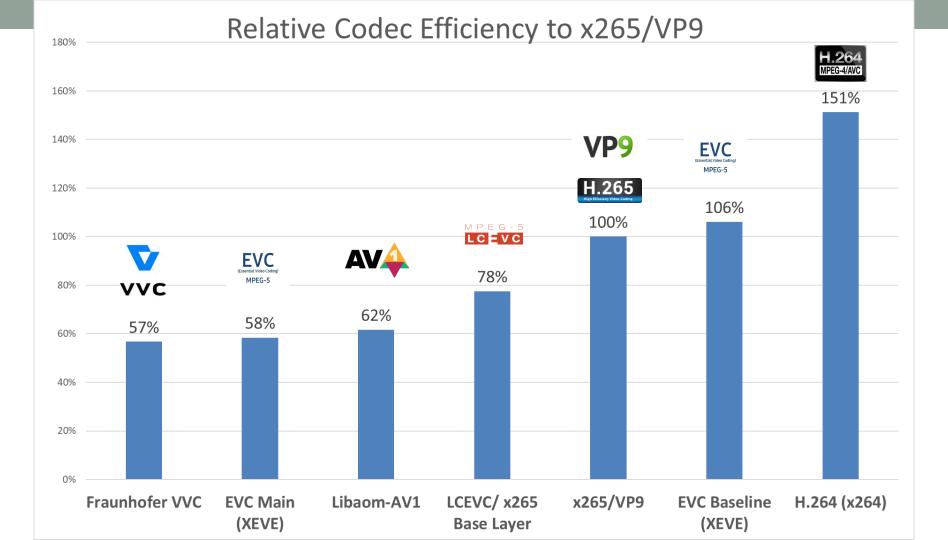
11% plan to deploy EVC in 2022We'll see

Bitmovin - Bitmovin Video Developer Report

Third-Party Predictions

Rethink TV – Doesn't include EVC

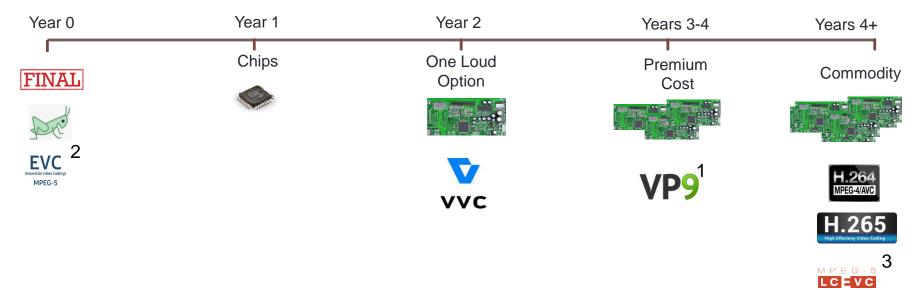
http://bit.ly/rethink_codec


Questions

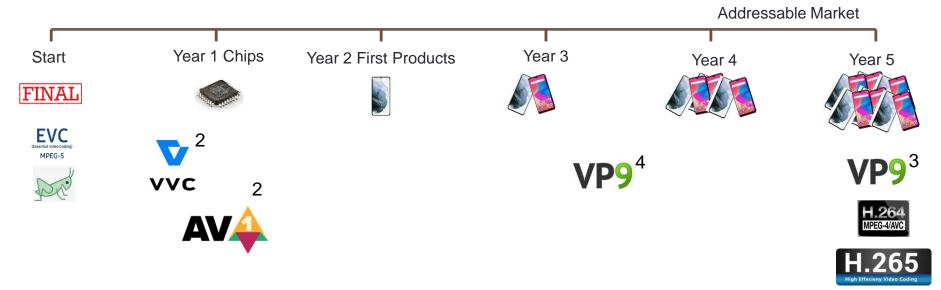
When to Care

AV M P E G - 5 EVC H.265 VP9 LCEVC **IPEG-4/AV** VVC MPFG-5 Patent owner - now HDR/DRM – now HDR/DRM – H.265 Very high Publishers not Unknown Other - check back Now Never (AV1) Living room – now Living room – H.265 volume currently using in 2024 Browser focus – AV1 Browser focus - Now Now Low volume - never Service providers 2023? Unknown 2023? Now Now Now Now (encode/player) (needs adoption)

Should be


11:50

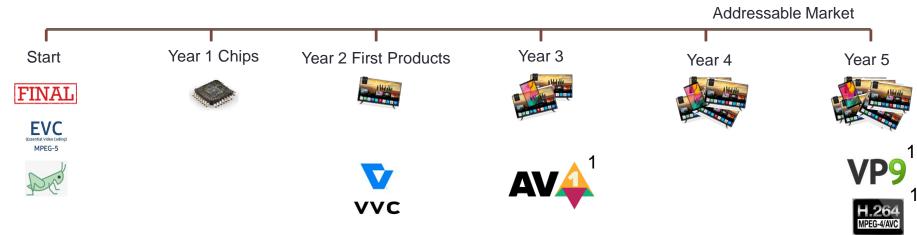
Encoding Time vs x265 Very Slow (Single Pass PQ/CRF)



Live Encode/Transcode

- 1. Probably will never go further
- 2. May never get started
- 3. Can operate efficiently in software or on top of existing encoders

Codec Deployment – Mobile

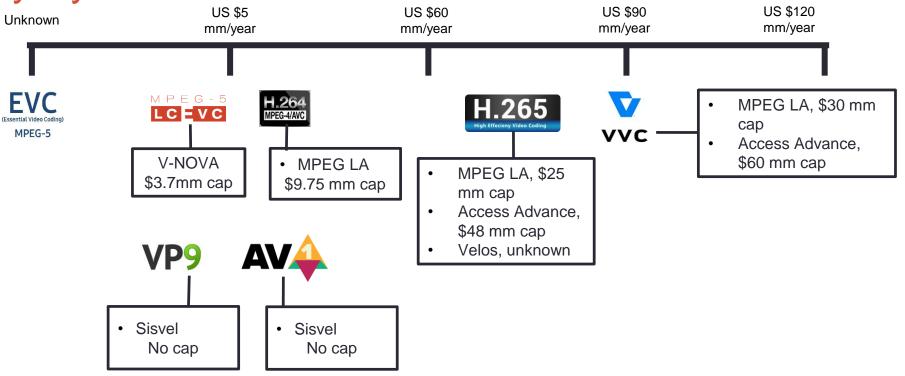


M P E G - 5

LCEVC

- 1. Plays efficiently in software
- 2. May not need hardware
- 3. Android
- 4. iPhones

Codec Deployment – Living Room



No Dolby Vision
 May not need hardware

Royalty Status

Known Royalty Cost

	H.264	HEVC	VP9	AV1	VVC	LCEVC	EVC
Patent pools	1 (MPEG LA)	2 (MPEG LA/Access Advance)	1 - Sisvel (disputed by Google)	1 - Sisvel (disputed by AO Media)	2 (MPEG LA/Access Advance)	0 (V-Nova)	?
Schema	 mostly encoder/ decoder per-unit royalty annual cap (\$9.75 million) 	- encoder/ decoder - per-unit royalty - annual cap (~\$75 million)	- decoder - per-unit royalty	- decoder - per-unit royalty	- encoder/ decoder - per-unit royalty - annual cap (~\$90 million)	 Content royalty (publisher pays) cap \$3.7 million 	- Unknown - 2-year window
Content	- Small content royalty / subs/PPV	- Video on physical media	None	None	- Video on physical media	Yes	Unknown
Learn more:	bit.ly/h264_license	bit.ly/hevc_3	bit.ly/vp9_pool	bit.ly/av1_pool	bit.ly/vvc_pools	<u>bit.ly/lcevc_r</u> oyalty	