WNETINT

How to Produce x264 and x265 Video at Maximum Quality and Maximum Efficiency

Jan Ozer

Marketing

NETINT

jan.ozer@netint.com

Gratitudes

- You the audience thanks for coming
- Dan Rayburn conference organizer thanks for inviting me
- NETINT thanks for letting me continue to pursue my passions (even when it doesn't help sell ASIC-based streaming transcoders)

Who this Presentation is For

- Before lasts night's StreamingIntermediate to advancedSummit Cocktail Party
- Ran into Alex Giladi/Dan GroisNovice to intermediatefrom Comcast
- Ran into David Ronca (Meta) and Anne Aaron (Netflix)

Quick call to my therapist

Novice to intermediate

Rank beginner to novice

🗙 NETINI

Who this Presentation is For

- Topics
 - Encoding quality intermediate some fun thoughts on presets and production efficiencies
 - Encoding production AWS/etc novice to beginner
 - Again, perhaps some interesting observations but few revelations for those already extensively producing in the cloud

What to do With This Information?

- What's the only answer that's always correct when it comes to encoding
 - It depends
 - o So,
 - What's the best codec it depends
 - What's the best encoder it depends
 - What's the best bitrate control mechanism - it depends

- Take what I present as a map to guide your own research
 - Testing with 2-8 of my own test files could yield interesting results, but could be totally irrelevant to your scenario
- My focus VOD (not live)
 - x264 1080p 30
 - x265 1080p 30 8-bit
 - x276 4K60 10-bit

🗙 NETINT

Agenda

- x264
 - o Preset
 - o Reference frames
 - o B-frames
 - Bitrate control
 - o Best AWS CPU
 - o Optimal core count
 - AWS
 - Desktop
- x265 HD
 - o Preset
 - Reference frames
 - o B-frames
 - o Best AWS CPU
 - Optimal core count
 - AWS
 - Desktop

- x265 4K
 - o Preset
 - o Best AWS CPU
 - Optimal core count
 - AWS
 - Desktop
- Bonus content
 - o What I learned at AWS

Presets

- Overview
- Presets and quality
- Presets and bandwidth
- Computing breakeven

Exploring Presets

• What does the preset do?

 Adjusts parameters to producers can choose desired quality/encoding time tradeoff

10 presets - ultrafast to placebo

- Quiz: What's our favorite x264 preset?
- Does the preset control distribution quality?
 - Yes?
 - No?

Preset Role

- Controls encoding time
- Most producers:
 - Choose quality level (VMAF 93-95/PSNR 45) and encode to match that quality level
- If lower quality preset doesn't achieve target quality, you boost the bitrate
 - So, preset doesn't control *quality*, it controls encoding *cost*
 - Choosing a preset is *always* a tradeoff between encoding cost and bandwidth cost

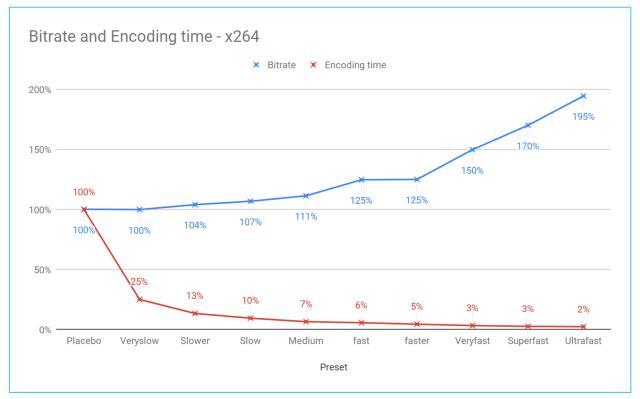
x.264 Encoding Time/Quality Tradeoff

★ Time ★ VMAF ★ Low-Frame 125.00% 99.22% 99.52% 99.77% 100.00% **'99**.99% 98.28% 98.34% 96.23% 94.83% 100.00% 89.93% 99.82% 100.00% 99.32% 99.84% 98.76% 97.61% 97.74% 96.06% 93.47% 84.89% 75.00% Veryslow – 100% VMAF/24% encoding time 50.00% 24.99% 25.00% 14.82% 10.40% 7.32% 5.52% 4.59% 3.31% 2.79% 2.15% 0.00% Ultrafast Superfast Veryfast faster Fast Medium Slow Slower Veryslow Placebo Medium – 98% Slow – 99.52% VMAF/7% encoding VMAF/10% encoding time time

- Two files
- Measure encoding time
- Harmonic mean VMAF
- Low-frame VMAF
- Preset and % of maximum time/score
- What's the best preset?

x.264 Encoding Time/Quality Tradeoff

★ Time ★ VMAF ★ Low-Frame 125.00% 100.00% 99.77% 99.99% 99.22% 99.52% 98.28% 98.34% 96.23% 94.83% 100.00% 89.93% 99.82% 99.32% 100.00% 99.84% 98.76% 97.61% 97.74% 96.06% 93.47% 84.89% 75.00% Not a suggestion but a recommendation: Adopt to your own test files 50.00% (animation, training, sports, whatever) Test reasonable number of files 24.99% Do the math 25.00% .82% Come to your own conclusions • 2.15% 0.00% Medium Superfast Veryfast faster Fast Slow Slower Veryslow Ultrafast Placebo Files


- Two files
- Measure enoding time
- Harmonic mean VMAF
- Low-frame VMAF
- Preset and % of maximum time/score
- Medium
- Slow

11

Next Question

How much do you have to boost the bitrate to match 100% quality?

H.264 Preset

Preset	Bitrate	Encoding time
Ultrafast	195%	2%
Superfast	170%	3%
Veryfast	150%	3%
faster	125%	5%
fast	125%	6%
Medium	111%	7%
Slow	107%	10%
Slower	104%	13%
Veryslow	100%	25%
Placebo	100%	100%

x264 - Viewer Count Breakeven - \$0.08/GB

At higher bandwidth costs, saving bandwidth matters more than encoding costs.

/ ill change wi	th	Bitrate		4000						encodi
each scenario		MMByte hour	es per	1800		Cost p	per GB	0.08		
		Encode/	hr	0.62						
Preset	Encode	Band	width		50	100	250	500	1000	5000
Ultrafast	\$0.06	3.50	\$0.28		\$14	\$28	\$70	\$140	\$280	\$1,401
Superfast	\$0.07	3.06	\$0.25		\$12	\$25	\$61	\$123	\$245	\$1,226
Veryfast	\$0.08	2.70	\$0.22		\$11	\$22	\$54	\$108	\$216	\$1,080
faster	\$0.11	2.25	\$0.18		\$9	\$18	\$45	\$90	\$180	\$901
fast	\$0.14	2.25	\$0.18		\$9	\$18	\$45	\$90	\$180	\$899
Medium	\$0.16	2.01	\$0.16		\$8	\$16	\$40	\$80	\$161	\$803
Slow	\$0.23	1.92	\$0.15		\$8	\$16	\$39	\$77	\$154	\$770
Slower	\$0.33	1.87	\$0.15		\$8	\$15	\$38	\$75	\$150	\$750
Veryslow	\$0.62	1.80	\$0.14		\$8	\$15	\$37	\$73	\$145	\$721
Placebo	\$2.47	1.80	\$0.14		\$10	\$17	\$39	\$75	\$147	\$724

x264 - Viewer Count Breakeven - \$0.04/GB

		Bitrate	Bitrate							
		MBytes	per hour	1800		Cost p	er GB	0.04		
		Encode/	hr	0.62						
Preset	Encode	Band	width		50	100	250	500	1000	5000
Ultrafast	\$0.06	3.50	\$0.14		\$7	\$14	\$35	\$70	\$140	\$701
Superfast	\$0.07	3.06	\$0.12		\$6	\$12	\$31	\$61	\$123	\$613
Veryfast	\$0.08	2.70	\$0.11		\$5	\$11	\$27	\$54	\$108	\$540
faster	\$0.11	2.25	\$0.09		\$5	\$9	\$23	\$45	\$90	\$450
fast	\$0.14	2.25	\$0.09		\$5	\$9	\$23	\$45	\$90	\$450
Medium	\$0.16	2.01	\$0.08		\$4	\$8	\$20	\$40	\$80	\$401
Slow	\$0.23	1.92	\$0.08		\$4	\$8	\$19	\$39	\$77	\$385
Slower	\$0.33	1.87	\$0.07		\$4	\$8	\$19	\$38	\$75	\$375
Veryslow	\$0.62	1.80	\$0.07		\$4	\$8	\$19	\$37	\$73	\$361
Placebo	\$2.47	1.80	\$0.07		\$6	\$10	\$21	\$39	\$75	\$363

x264 - Viewer Count Breakeven - \$0.02/GB

As bandwidth costs drop, encoding cost matters longer (but still not that long)

		Bitrate		4000						lo
		MBytes	MBytes per hour			Cost p	per GB	0.02		
		Encode/	'nr	0.62						
Preset	Encode	Band	width		50	100	250	500	1000	5000
Ultrafast	\$0.06	3.50	\$0.07		\$4	\$7	\$18	\$35	\$70	\$350
Superfast	\$0.07	3.06	\$0.06		\$3	\$6	\$15	\$31	\$61	\$306
Veryfast	\$0.08	2.70	\$0.05		\$3	\$5	\$14	\$27	\$54	\$270
faster	\$0.11	2.25	\$0.05		\$2	\$5	\$11	\$23	\$45	\$225
fast	\$0.14	2.25	\$0.04		\$2	\$5	\$11	\$23	\$45	\$225
Medium	\$0.16	2.01	\$0.04		\$2	\$4	\$10	\$20	\$40	\$201
Slow	\$0.23	1.92	\$0.04		\$2	\$4	\$10	\$19	\$39	\$193
Slower	\$0.33	1.87	\$0.04		\$2	\$4	\$10	\$19	\$38	\$188
Veryslow	\$0.62	1.80	\$0.04		\$2	\$4	\$10	\$19	\$37	\$181
Placebo	\$2.47	1.80	\$0.04		\$4	\$6	\$11	\$21	\$39	\$183

x264 - Viewer Count Breakeven - \$0.02/GB

As bandwidth costs drop, encoding cost matters longer (but still not that long)

		Bitrate		4000						lo
		MBytes	MBytes per hour			Cost p	per GB	0.02		
		Encode/	'nr	0.62						
Preset	Encode	Band	width		50	100	250	500	1000	5000
Ultrafast	\$0.06	3.50	\$0.07		\$4	\$7	\$18	\$35	\$70	\$350
Superfast	\$0.07	3.06	\$0.06		\$3	\$6	\$15	\$31	\$61	\$306
Veryfast	\$0.08	2.70	\$0.05		\$3	\$5	\$14	\$27	\$54	\$270
faster	\$0.11	2.25	\$0.05		\$2	\$5	\$11	\$23	\$45	\$225
fast	\$0.14	2.25	\$0.04		\$2	\$5	\$11	\$23	\$45	\$225
Medium	\$0.16	2.01	\$0.04		\$2	\$4	\$10	\$20	\$40	\$201
Slow	\$0.23	1.92	\$0.04		\$2	\$4	\$10	\$19	\$39	\$193
Slower	\$0.33	1.87	\$0.04		\$2	\$4	\$10	\$19	\$38	\$188
Veryslow	\$0.62	1.80	\$0.04		\$2	\$4	\$10	\$19	\$37	\$181
Placebo	\$2.47	1.80	\$0.04		\$4	\$6	\$11	\$21	\$39	\$183

Default

17

Reference Frames

Writing library :	x264 cor <u>e 164 r310</u> 6 eaa68fa
	cabac=1 / ref=16 / deblock=1:0:0 / analyse=0x3:0x133 / me=umh / subme=10 / psy=1 /
	psy_rd=1.00:0.00 / mixed_ref=1 / me_range=24 / chroma_me=1 / trellis=2 / 8x8dct=1 /
	cqm=0 / deadzone=21,11 / fast_pskip=1 / chroma_qp_offset=-2 / threads=34 /
	lookahead_threads=5 / sliced_threads=0 / nr=0 / decimate=1 / interlaced=0 /
Encoding	bluray_compat=0 / constrained_intra=0 / bframes=8 / b_pyramid=2 / b_adapt=2 /
settings :	b_bias=0 / direct=3 / weightb=1 / open_gop=0 / weightp=2 / keyint=60 / keyint_min=31 /
	scenecut=0 / intra_refresh=0 / rc_lookahead=60 / rc=2pass / mbtree=1 / bitrate=4200 /
	ratetol=1.0 / qcomp=0.60 / qpmin=0 / qpmax=69 / qpstep=4 / cplxblur=20.0 / qblur=0.5 /
	vbv_maxrate=8400 / vbv_bufsize=8400 / nal_hrd=none / filler=0 / ip_ratio=1.40 /
	aq=1:1.00

- Veryslow preset use 16 reference frames
 - How much encoding time does this take?
 - How much quality do they add?
 - Is it worth it/

Reference Fram	es									
	,	Baseline	Ref=1	Ref=2	Ref=4	Ref=8	Ref=10	Ref=12	Delta	1
Freedom								0:00:28	33.33%	
Football	N	My analysi	is: encor	de 2 files	, to range	of parer	nters	0:00:44	36.00%	
Average		0:00:40	0:00:26	0:00:27	0:00:27	0:00:33	0:00:34	0:00:36	35.00%	Encoding time
Bitrate		Baseline	Ref=1	Ref=2	Ref=4	Ref=8	Ref=10	Ref=12	Delta	
Freedom		3,713	3,715	3713	3,713	3,713	3,715	3,713	0.05%	
Football		4,135	4,141	4135	4,131	4,131	4,134	4,128	0.31%	∕
Average		3 924	3 928	3 924	3 922	3,922	3,925	3,921	0.19%	Verify bitrate
VMAF	Frood	dom - cono	oort vide			Ref=8	Ref=10	Ref=12	Delta	
Freedom						93.89	93.92	93.90	0.20%	
Football		ball - Harm		st clip		93.95	93.99	94.00	0.18%	Λ
Average	Inese	e are 1080	Jp30			93.92	93.96	93.95	0.17%	Overall VMAF
Low Frame						Ref=8	Ref=10	Ref=12	Delta	
Freedom		some initi				89.71	89.59	89.22	0.62%	
Football	impac	ct of enco	ding par	ameters.		83.64	83.42	83.66	0.76%	
Average						86.67	86.50	86.44	0.39%	Low Frame VMA
Standard Deviation		Baseline	Ref=1	Ref=2	Ref=4	Ref=8	Ref=10	Ref=12	Delta	
Freedom		2.19	2.21	2.20	2.19	2.19	2.19	2.16	1.97%	
Football		3.51	3.58	3.56	3.53	3.51	!	3.50	2.30%	
Average		2.85	2.89	2.88	2.86	2.85	2.19	2.83	24.20%	VMAF Std. Dev.

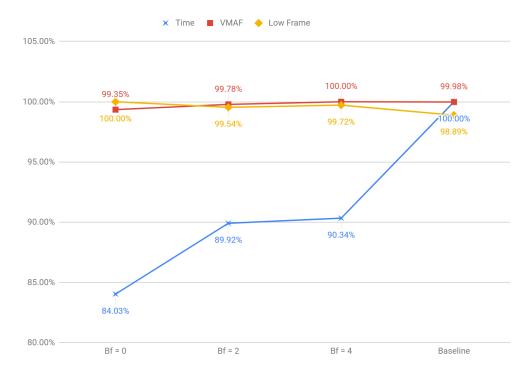
Reference Frames	j								
	Baseline	Ref=1	Ref=2	Ref=4	Ref=8	Ref=10	Ref=12	Delta	
Freedom	0:00:30	0:00:20	0:00:20	0:00:20	0:00:26	0:00:26	0:00:28	33.33%	
Football	0:00:50	0:00:32	0:00:34	0:00:34	0:00:40	0:00:42	0:00:44	36.00%	25% opcoding
Average	0:00:40	0:00:26	0:00:27	0:00:27	0:00:33	0:00:34	0:00:36	35.00%	35% encoding
Bitrate	Baseline	Ref=1	Ref=2	Ref=4	Ref=8	Ref=10	Ref=12	Delta	time
Freedom	3,713	3,715	3713	3,713	3,713	3,715	3,713	0.05%	
Football	4,135	4,141	4135	4,131	4,131	4,134	4,128	0.31%	
Average	3,924	3,928	3,924	3,922	3,922	3,925	3,921	0.19%	
VMAF	Baseline	Ref=1	Ref=2	Ref=4	Ref=8	Ref=10	Ref=12	Delta	
Freedom	93.90	93.74	93.80	93.84	93.89	93.92	93.90	0.20%	
Football	94.00	93.86	93.84	93.88	93.95	93.99	94.00	0.18%	∕
Average	93.95	93.80	93.82	93.86	93.92	93.96	93.95	0.17%	Overall VMAF
Low Frame	Baseline	Ref=1	Ref=2	Ref=4	Ref=8	Ref=10	Ref=12	Delta	
Freedom	89.36	89.78	89.54	89.77	89.71	89.59	89.22	0.62%	
Football	83.79	83.16	83.59	83.79	83.64	83.42	83.66	0.76%	
Average	86.58	86.47	86.56	86.78	86.67	86.50	86.44	0.39%	Low Frame VMA
Standard Deviation	Baseline	Ref=1	Ref=2	Ref=4	Ref=8	Ref=10	Ref=12	Delta	
Freedom	2.19	2.21	2.20	2.19	2.19	2.19	2.16	1.97%	
Football	3.51	3.58	3.56	3.53	3.51	3.52	3.50	2.30%	
Average	2.85	2.89	2.88	2.86	2.85	2.86	2.83	2.17%	VMAF Std. Dev

Reference Frames

- May work differently with different source clips
 - I tested football and a concert video
 - Test may be able to shave 35% from encoding costs with minimal quality impact

🗙 NETINI

B-Frames


- B-frames theoretically the most efficient
 - Tend to underperform
- 16% encoding time delta
- Minimal VMAF delta
- Worst:
 - Low-frame
 - Worst standard deviation

	Bf = 0	Bf = 2	Bf = 4	Baseline	Delta
Freedom	0:03:22	0:03:37	0:03:36	0:03:53	13.30%
Football	0:03:18	0:03:31	0:03:34	0:04:03	18.52%
Average	0:03:20	0:03:34	0:03:35	0:03:58	15.91%
Bitrate	Bf = 0	Bf = 2	Bf = 4	Baseline	Delta
Freedom	3,800	3,804	3,807	3,812	0.18%
Football	4,202	4,200	4,204	4,200	0.10%
Average	4,001	4,002	4,006	4,006	0.11%
VMAF	Bf = 0	Bf = 2	Bf = 4	Baseline	Delta
Freedom	94.01	93.97	94.29	94.26	0.34%
Football	90.93	91.78	91.87	91.86	1.03%
Average	92.47	92.88	93.08	93.06	0.66%
Low Frame	Bf = 0	Bf = 2	Bf = 4	Baseline	Delta
Freedom	89.72	88.35	88.57	88.03	1.92%
Football	83.88	84.45	84.55	83.64	1.09%
Average	86.80	86.40	86.56	85.83	1.13%
Standard Deviation	Bf = 0	Bf = 2	Bf = 4	Baseline	Delta
Freedom	2.02	2.26	2.32	2.31	14.58%
Football	3.38	3.11	3.08	3.07	10.29%
Average	2.70	2.69	2.70	2.69	0.54%

B-Frames

 If you use a highquality preset, experiment with lower b-frame values

B-Frames, Encoding Time/Quality

Constrained VBR Levels

- Minimal impact on encoding time
- VMAF about the same
- Low frame greater delta
- More significant in standard deviation
- Not shown obviously, higher max bitrates
 - Could disrupt stream in constrained connections

Constrained VBR 9	Constrained VBR % - x264											
Encoding time	200%	100%	150%	300%	Delta							
Freedom	0:00:50	0:00:48	0:00:48	0:00:50	4.00%							
Football	0:00:30	0:00:32	0:00:30	0:00:32	6.25%							
Average	0:00:40	0:00:40	0:00:39	0:00:41	4.88%							
Bitrate	200%	100%	150%	300%	Delta							
Freedom	3,712	3,714	3,713	3,711	0.08%							
Football	4,132	4,124	4,133	4,134	0.24%							
Average	3,922	3,919	3,923	3,923	0.10%							
VMAF	200%	100%	150%	300%	Delta							
Freedom	93.89	93.88	93.91	93.91	0.03%							
Football	94.02	93.73	93.99	94.00	0.31%							
Average	93.96	93.80	93.95	93.95	0.16%							
Low Frame	200%	100%	150%	300%	Delta							
Freedom	89.34	89.10	89.41	89.42	0.36%							
Football	83.86	80.78	83.11	83.77	3.68%							
Average	86.60	84.94	86.26	86.59	1.92%							
Standard Deviation	200%	100%	150%	300%	Delta							
Freedom	2.19	2.18	2.18	2.18	0.35%							
Football	3.51	4.32	3.54	3.50	18.88%							
Average	2.85	3.25	2.86	2.84	12.50%							

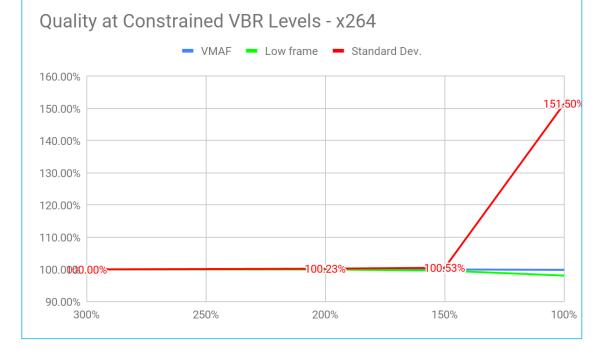
24

VBR Constraints of the Rich and Famous

https://bit.ly/con_vbr

YouTube	Rez	Codec	Average	Мах	Multiple		
TopGun	8K	AV1	18,159	44,878	2.5		
TopGun	4K	AV1	8,304	30,087	3.6		
TopGun	2K	AV1	4,958	16,800	3.4		
TopGun	1080p	AV1	1,592	7,750	4.9		
Soccer	8K	AV1	20,247	72,808	3.6		
Soccer	4K	AV1	9,823	37,143	3.8		
Soccer	2K	AV1	4,790	17,010	3.6		
Soccer	1080p	AV1	2,224	6,035	2.7	3.5	Average AV1
TOS	720p	AVC	1,977	3,911	2.0		
TOS	1080p	AVC	3,865	8,860	2.3		
Olivia Rodego - Brutal	1080p	AVC	5,239	12,969	2.5		
Selena Gomez	1080p	AVC	1,846	5,364	2.9		
TopGun	1080p	AVC	3,067	10,624	3.5		
Soccer	1080p	AVC	5,380	11,512	2.1	2.5	Average AVC
TOS	720p	VP9	1,005	2,215	2.2		
TOS	1080p	VP9	1,610	3,461	2.1		
Costa Rica	4K	VP9	26,702	52,194	2.0		
TopGun	4K	VP9	9,672	25,008	2.6		
TopGun	2K	VP9	5,292	12,965	2.4		
TopGun	1080p	VP9	1,258	4,675	3.7		
Soccer	4K	VP9	19,894	41,739	2.1		
Soccer	2K	VP9	10,617	20,659	1.9		
Soccer	1080p	VP9	4,040	7,183	1.8	2.3	Average VP9
Average					2.8		
Мах					4.9		

Facebook	Rez	Codec	Average	Max	Multiple		
TOS	720p	AVC	2,196	8,637	3.9		
COVID	1080x1080	AVC	993	9,413	9.5		
Cop Cam	640x640	AVC	579	2,573	4.4		
Kimmel	720p	AVC	1,590	4,406	2.8		
Ukraine Interview	720p	AVC	1,016	3,738	3.7	4.9	Average AVC
Colber	1080p	VP9	1,376	3,609	2.6		
Biden in Poland	1080p	VP9	842	3,104	3.7		
Fatboy	1080x1080	VP9	1,577	5,772	3.7		
Cat falling	1080x1920	VP9	2,384	3,822	1.6		
Interview	720p	VP9	1,650	3,967	2.4	2.8	Average VP9
Average					3.8		
Мах					9.5		


VBR Constraints of the Rich and Famous

Apple Trailer	Rez	Codec	Average	Max	Multiple
Topgun 1	816p	AVC	8,827	15,471	1.8
All the Old Knives	816p	AVC	9,326	38,862	4.2
All My Friends Hate Me	816p	AVC	9,485	13,024	1.4
Agent Game	1056p	AVC	9,242	44,803	4.8
Topgun 2	816p	AVC	9,731	16,471	1.7
Topgun 3	1080p	AVC	9,417	25,372	2.7
Topgun 4	816p	AVC	9,594	24,957	2.6
Average					2.7
Max					4.8

Bitrate Control Strategy	2x	Over 2x	Over 4x
YouTube			x
Vimeo		x	
Facebook			x
Three-letter network	x		
Apple trailers			x
CNN	x		
NY Times			x
Wall Street Journal		x	
Washington Post		x	

Constrained VBR Levels

- On these test clips
 - Minimal delta in overall or low-frame
 - Blg delta @ 100% for standard deviation
- If 100% time to rethink
- May want to experiment with 300+

Best Instance for x264

- Three types of instances on AWS
 - Intel (c6i.xlarge) Compute/Intel
 - AMD (c6a.xlarge) Compute/AMD
 - AWS Graviton (c7g.xlarge) Compute Graviton
- Which encodes most efficiently?
- Test methodology

CPU Specific Builds

- Different CPUs operate most efficiently (in theory) using specialized builds
- If you're going to experiment with different
 CPUs, should either
 compile independently or
 try third-party

FFmpeg Static Builds

Welcome! Here you'll find the latest versions of FFmpeg for Linux kernels 3.2.0 and up. For installation instructions please read the FAQ.

Note: it's highly recommended to use git master builds, because bug fixes and other improvements are added daily.

All static builds available here are licensed under the GNU General Public License version 3. If you appreciate this up-to-date build of FFmpeg and my time that goes into to maintaining it, please consider donating. Thank you.

Patreon PayPal Bitcoin: 3ErDdF5JeG9RMx2DXwXEeunrsc5dVHjmeq Dogecoin: DH4WZPTjwKh2TarQhkpQrKjHZ9kNTkiMNL Ethereum: 0x491f0b4bAd15FF178257D9Fa81ce87baa8b6E242

release: 6.0

git master: built on 20230313

ffmpeg-git-amd64-static.tar.xz - md5 ffmpeg-git-i686-static.tar.xz - md5 ffmpeg-git-arm64-static.tar.xz - md5 ffmpeg-git-armhf-static.tar.xz - md5 ffmpeg-git-armhf-static.tar.xz - md5 build info source ffmpeg-release-amd64-static.tar.xz - md5 ffmpeg-release-i686-static.tar.xz - md5 ffmpeg-release-arm64-static.tar.xz - md5 ffmpeg-release-arm61-static.tar.xz - md5 ffmpeg-release-arme1-static.tar.xz - md5 build info source old releases AMD version

Intel version

3 ARM versions

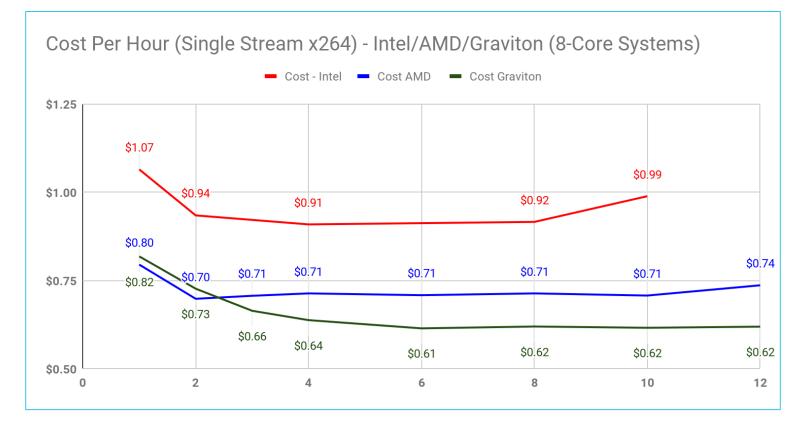
🗙 NETINT 📃

Methodology

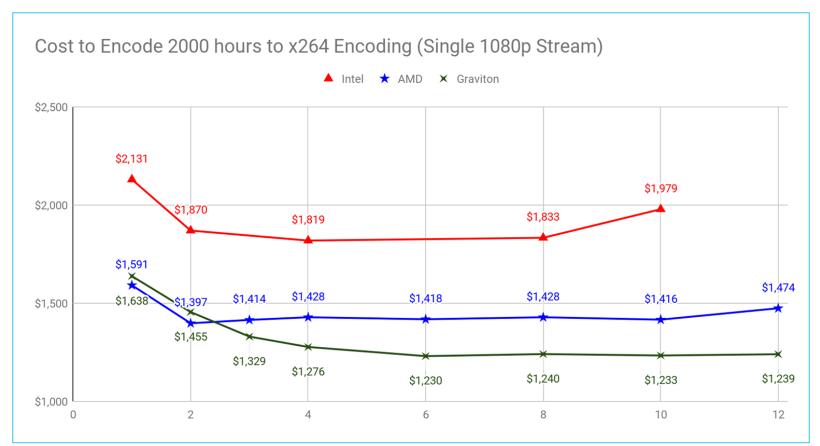
- FFmpeg version: Downloaded CPU specific versions from johnvansickle.com/ffmpeg/
 - Compared with Ubuntu native version (4.4)
 - o Used faster version
 - Used version from Multicoreware for Graviton (x265 performance on Graviton was very poor until this version)
 - Encoded test file using multiple instances to find most efficient encoding cost
 - Produce single 1080p output stream (not encoding ladder)
 - Track seconds, compute cost per hour
 - Rinse and repeat with different CPUs

Instances	Encode time	Frames	Frames/ second	Frames/ hour	seconds of video	Minutes of video	Cost/Hour
1	110	900	8.18	29,455	982	16.36	\$1.24667
2	171	1800	10.53	37,895	1,263	21.05	\$0.96900
4	325	3600	11.08	39,877	1,329	22.15	\$0.92083
8	<mark>6</mark> 49	7200	11.09	39,938	1,331	22.19	\$0.91942
10	873	9000	10.31	37,113	1,237	20.62	\$0.98940

release: 6.0


ffmpeg-release-amd64-static.tar.xz - md5 ffmpeg-release-i686-static.tar.xz - md5 ffmpeg-release-arm64-static.tar.xz - md5 ffmpeg-release-armhf-static.tar.xz - md5 ffmpeg-release-armel-static.tar.xz - md5 build info source old releases

30


8-Core AWS Instance - On Demand Pricing

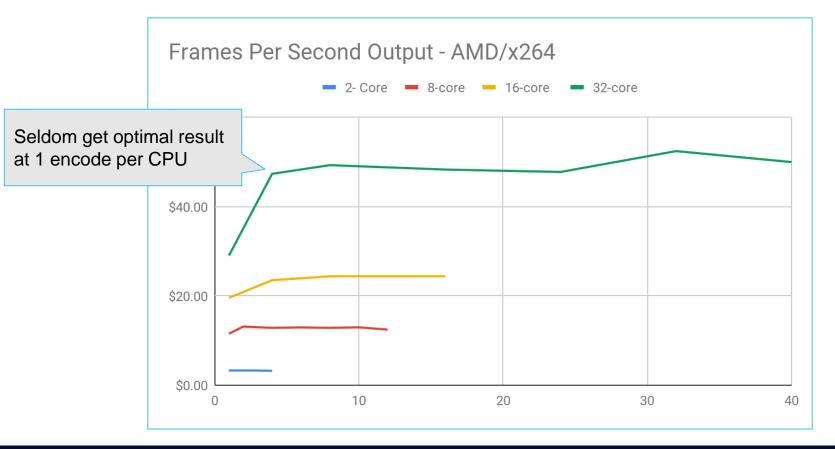
- AMD c6a.2xlarge \$0.306
- Graviton c7g.2xlarge \$0.289
- Intel c6i.2xlarge \$0.34

The Winner Is - For x264 – Graviton (per-hour)

The Winner Is - For x264 – Graviton (2000 hours)

Reality Check: MediaConvert Pricing - 2000 hours AVC HQ

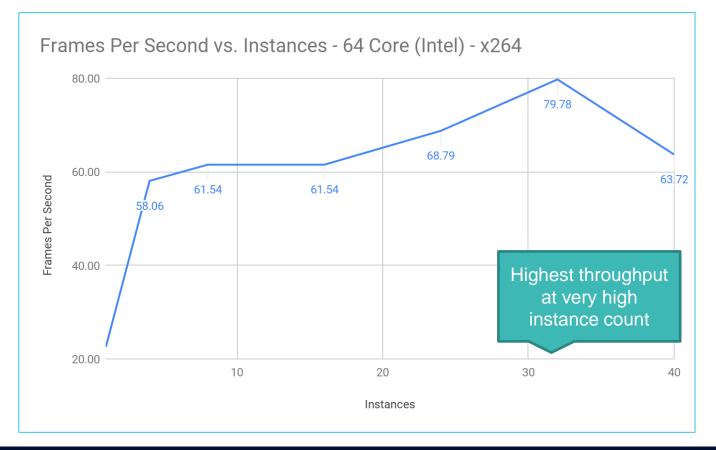
Estimate summary Info			Getting Started with AWS
Upfront cost 0.00 USD	Monthly cost 420.84 USD	Total 12 months cost 5,050.08 USD Includes upfront cost	Get started for free Request a quote
My Estimate Q Find resources		Duplicate Delete M	love to Create group Add suppo
Service Name	▼ Upfront cost	▼ Monthly cost	▼ Description
AWS Elemental MediaCo	nvert 🟒 0.00 USD	420.84 USD	2000 hours of 1080p HQ AVC

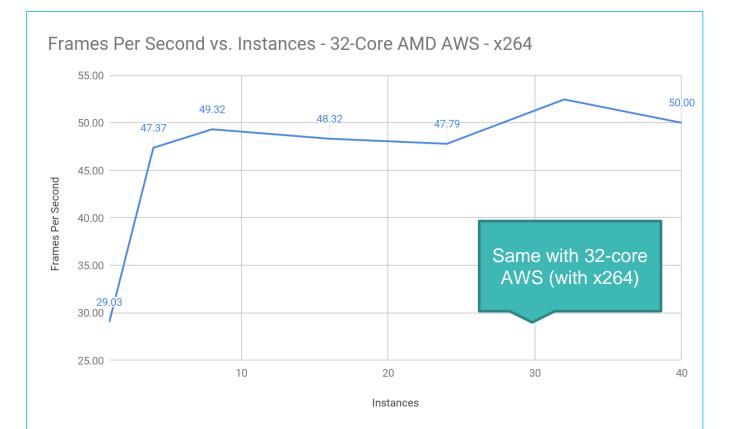

Encoding String

ffmpeg -y -i Orchestra.mp4 -c:v libx264 -profile:v high -preset veryslow -g 60
-keyint_min 60 -sc_threshold 0 -b:v 4200k -pass 1 -f mp4 /dev/null

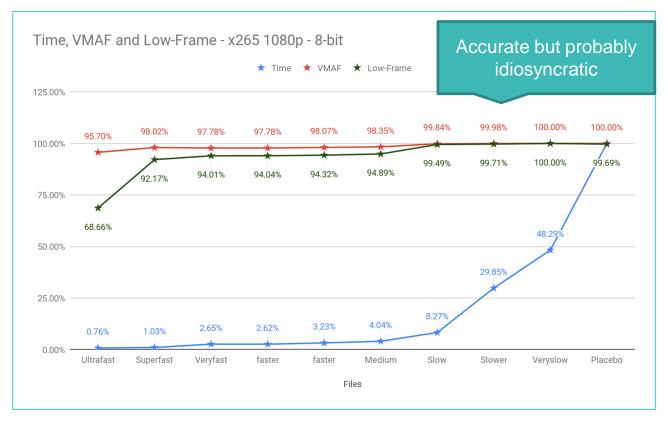
ffmpeg -y -i Orchestra.mp4 -c:v libx264 -profile:v high -preset veryslow -g 60
-keyint_min 60 -sc_threshold 0 -b:v 4200k -maxrate 8400k -bufsize 8400k -pass
2 orchestra_x264_output.mp4

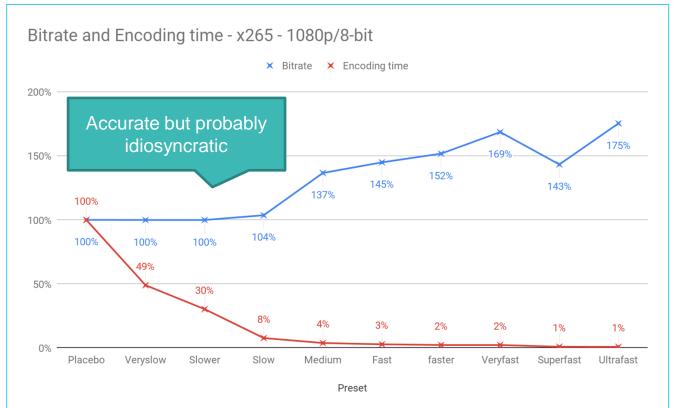
35


Most Efficient CPU Core Count?


Most Efficient CPU Core Count?

Frames Per Second - 64-core Intel Workstation


Frames Per Second - 32-core AWS AMD Instance


x265 - 8-Bit 1080p (Rinse and Repeat)

- Preset
- Reference frames
- Bitrate control
- 10-bit vs 8-bit output
- Best AWS CPU
- Best core count

HEVC - 8-bit 1080p Preset

HEVC - 8-bit 1080p Preset

Preset	Bitrate	Encoding time
Ultrafast	175%	1%
Superfast	143%	1%
Veryfast	169%	2%
faster	152%	2%
Fast	145%	3%
Medium	137%	4%
Slow	104%	8%
Slower	100%	30%
Veryslow	100%	49%
Placebo	100%	100%

x265 - 1080p - Viewer Count Breakeven - \$0.08/GB

0x encoding cost increase			Bitrate MBytes per hour Encode/hr			Cost p	Cost per GB			At highe sts, sav matter encoo	vin 's r
Preset	Encode	Band	width		50	100	250	500	1000	5000	
Ultrafast	\$0.53	2.19	\$0.18		\$9	\$18	\$44	\$88	\$176	\$876	
Superfast	\$0.59	1.92	\$0.15		\$8	\$16	\$39	\$77	\$154	\$767	
Veryfast	\$0.73	1.69	\$0.13		\$7	\$14	\$34	\$68	\$136	\$675	
faster	\$0.99	1.41	\$0.11		\$7	\$12	\$29	\$57	\$114	\$564	
fast	\$1.25	1.40	\$0.11		\$7	\$12	\$29	\$57	\$114	\$563	
Medium	\$1.44	1.25	\$0.10		\$6	\$11	\$27	\$52	\$102	\$503	
Slow	\$2.08	1.20	\$0.10		\$7	\$12	\$26	\$50	\$98	\$483	
Slower	\$2.95	1.17	\$0.09		\$8	\$12	\$26	\$50	\$97	\$471	
Veryslow	\$5.50	1.13	\$0.09		\$10	\$15	\$28	\$51	\$96	\$456	
Placebo	\$21.89	1.13	\$0.09		\$26	\$31	\$44	\$67	\$112	\$473	

At higher bandwidth costs, saving bandwidth matters more than encoding costs.

x265 - 1080p - Viewer Count Breakeven - \$0.04/GB

		Bitrate		2500						
		MBytes	MBytes per hour			Cost per GB		0.04		
		Encode/	hr	5.5						
Preset	Encode	Band	Bandwidth		50	100	250	500	1000	5000
Ultrafast	\$0.53	2.19	\$0.09		\$5	\$9	\$22	\$44	\$88	\$438
Superfast	\$0.59	1.92	\$0.08		\$4	\$8	\$20	\$39	\$77	\$384
Veryfast	\$0.73	1.69	\$0.07		\$4	\$7	\$18	\$34	\$68	\$338
faster	\$0.99	1.41	\$0.06		\$4	\$7	\$15	\$29	\$57	\$282
fast	\$1.25	1.40	\$0.06		\$4	\$7	\$15	\$29	\$57	\$282
Medium	\$1.44	1.25	\$0.05		\$4	\$6	\$14	\$27	\$52	\$252
Slow	\$2.08	1.20	\$0.05		\$4	\$7	\$14	\$26	\$50	\$243
Slower	\$2.95	1.17	\$0.05		\$5	\$8	\$15	\$26	\$50	\$237
Veryslow	\$5.50	1.13	\$0.05		\$8	\$10	\$17	\$28	\$51	\$231
Placebo	\$21.89	1.13	\$0.05		\$24	\$26	\$33	\$44	\$67	\$247

x265 - Viewer Count Breakeven - \$0.02/GB

As bandwidth costs drop, encoding cost matters longer

		Bitrate		2500						10
		MBytes	per hour	1125		Cost p	per GB	0.02		
		Encode/	hr	5.5						
Preset	Encode	Band	width		50	100	250	500	1000	5000
Ultrafast	\$0.53	2.19	\$0.04		\$3	\$5	\$11	\$22	\$44	\$219
Superfast	\$0.59	1.92	\$0.04		\$3	\$4	\$10	\$20	\$39	\$192
Veryfast	\$0.73	1.69	\$0.03		\$2	\$4	\$9	\$18	\$34	\$169
faster	\$0.99	1.41	\$0.03		\$2	\$4	\$8	\$15	\$29	\$142
fast	\$1.25	1.40	\$0.03		\$3	\$4	\$8	\$15	\$29	\$142
Medium	\$1.44	1.25	\$0.03		\$3	\$4	\$8	\$14	\$27	\$127
Slow	\$2.08	1.20	\$0.02		\$3	\$4	\$8	\$14	\$26	\$122
Slower	\$2.95	1.17	\$0.02		\$4	\$5	\$9	\$15	\$26	\$120
Veryslow	\$5.50	1.13	\$0.02		\$7	\$8	\$11	\$17	\$28	\$118
Placebo	\$21.89	1.13	\$0.02		\$23	\$24	\$28	\$33	\$44	\$135

x264 - Viewer Count Breakeven - \$0.02/GB

As bandwidth costs drop, encoding cost matters longer (but still not that long)

		Bitrate		2500					1	lc
		MBytes	per hour	1125		Cost p	per GB	0.02		
		Encode/	′hr	5.5						
Preset	Encode	Band	width		50	100	250	500	1000	5000
Ultrafast	\$0.53	2.19	\$0.04		\$3	\$5	\$11	\$22	\$44	\$219
Superfast	\$0.59	1.92	\$0.04		\$3	\$4	\$10	\$20	\$39	\$192
Veryfast	\$0.73	1.69	\$0.03		\$2	\$4	\$9	\$18	\$34	\$169
faster	\$0.99	1.41	\$0.03		\$2	\$4	\$8	\$15	\$29	\$142
fast	\$1.25	1.40	\$0.03		\$3	\$4	\$8	\$15	\$29	\$142
Medium	\$1.44	1.25	\$0.03		\$3	\$4	\$8	\$14	\$27	\$127
Slow	\$2.08	1.20	\$0.02		\$3	\$4	\$8	\$14	\$26	\$122
Slower	\$2.95	1.17	\$0.02		\$4	\$5	\$9	\$15	\$26	\$120
Veryslow	\$5.50	1.13	\$0.02		\$7	\$8	\$11	\$17	\$28	\$118
Placebo	\$21.89	1.13	\$0.02		\$23	\$24	\$28	\$33	\$44	\$135

Default

Reference Frames

Writing library: x265 3.5+96-9c9ab68fc:[Windows][GCC 12.2.0][64 bit] 8bit+10bit+12bit

cpuid=1111039 / frame-threads=5 / numa-pools=32,32 / wpp / no-pmode / no-pme / no-psnr / nossim / log-level=2 / input-csp=1 / input-res=1920x1080 / interlace=0 / total-frames=0 / level-idc=0 / high-tier=1 / uhd-bd=0 / ref=5 / no-allow-non-conformance / no-repeat-headers / annexb / no-aud / no-eob / no-eos / no-hrd / info / hash=0 / temporal-layers=0 / open-gop / min-keyint=60 / keyint=60 / gop-lookahead=0 / bframes=8 / b-adapt=2 / b-pyramid / bframe-bias=0 / rclookahead=40 / lookahead-slices=0 / scenecut=0 / no-hist-scenecut / radl=0 / no-splice / no-intra-

- Slower preset use 5 reference frames
 - How much encoding time does this take?
 - How much quality do they add?
 - Is it worth it/

Reference Frames - x265

	Baseline	Ref=1	Ref=2	Ref=3	Ref=4	Delta	
Freedom	0:04:56	0:03:36	0:04:04	0:04:24	0:04:34	27.03%	
Football	0:08:34	0:06:22	0:07:04	0:07:42	0:07:58	25.68%	26% encoding
Average	0:06:45	0:04:59	0:05:34	0:06:03	0:06:16	26.17%	26% encoding time
Bitrate	Baseline	Ref=1	Ref=2	Ref=3	Ref=4	Delta	
Freedom	2,159	2,156	2155	2,161	2,156	0.28%	
Football	2,349	2,354	2354	2,354	2,350	0.21%	
Average	2,254	2,255	2,255	2,258	2,253	0.20%	
VMAF	Baseline	Ref=1	Ref=2	Ref=3	Ref=4	Delta	1
Freedom	93.45	93.19	93.33	93.40	93.42	0.27%	
Football	93.74	93.53	93.59	93.66	93.70	0.22%	
Average	93.59	93.36	93.46	93.53	93.56	0.25%	Overall VMAF
Low Frame	Baseline	Ref=1	Ref=2	Ref=3	Ref=4	Delta	
Freedom	88.47	88.03	88.20	88.23	88.50	0.54%	1
Football	83.54	83.28	83.39	83.28	83.47	0.31%	
Average	86.00	85.65	85.79	85.75	85.99	0.41%	Low Frame VMA
Standard Deviation	Baseline	Ref=1	Ref=2	Ref=3	Ref=4	Delta	
Freedom	2.51	2.57	2.55	2.52	2.52	2.54%	
Football	4.18	4.21	4.20	4.19	4.18	0.76%	/
Average	3.34	3.39	3.38	3.35	3.35	1.44%	VMAF Std. Dev.

Reference Frames - x265

- Reduce encoding time by 26%; minimal quality delta.
- May work differently with different source clips
 - I tested football and a concert video
- Test may be able to shave 25%+ from encoding time with minimal quality impact

W NETINI

Constrained VBR Levels

- Again, 100% (CBR) is worst result all round
- Minimal quality deltas for average and low frame
- Meaningful difference with standard deviation
- Avoid 100%; experiment with higher values in high bandwidth rungs/ environments
 - Top rung
 - o IPTV

Encoding time	100%	150%	200%	300%	Delta
Freedom	0:04:58	0:04:54	0:04:54	0:04:54	1.34%
Football	0:08:30	0:08:26	0:08:28	0:08:28	0.78%
Average	0:06:44	0:06:40	0:06:41	0:06:41	0.99%
Bitrate	100%	150%	200%	300%	Delta
Freedom	2,162	2,159	2,349	2,349	8.09%
Football	2,368	2,350	2,158	2,158	8.87%
Average	2,265	2,255	2,254	2,254	0.51%
VMAF	100%	150%	200%	300%	Delta
Freedom	93.47	93.46	93.43	93.46	0.04%
Football	93.50	93.74	93.77	93.75	0.29%
Average	93.49	93.60	93.60	93.60	0.13%
Low Frame	100%	150%	200%	300%	Delta
Freedom	88.56	88.46	88.27	88.53	0.32%
Football	80.86	83.85	83.62	83.47	3.56%
Average	84.71	86.15	85.95	86.00	1.68%
Standard Deviation	100%	150%	200%	300%	Delta
Freedom	2.47	2.51	2.52	2.51	1.85%
Football	5.44	4.16	4.18	4.19	23.40%
Average	3.95	3.34	3.35	3.35	15.64%

👀 NETINT

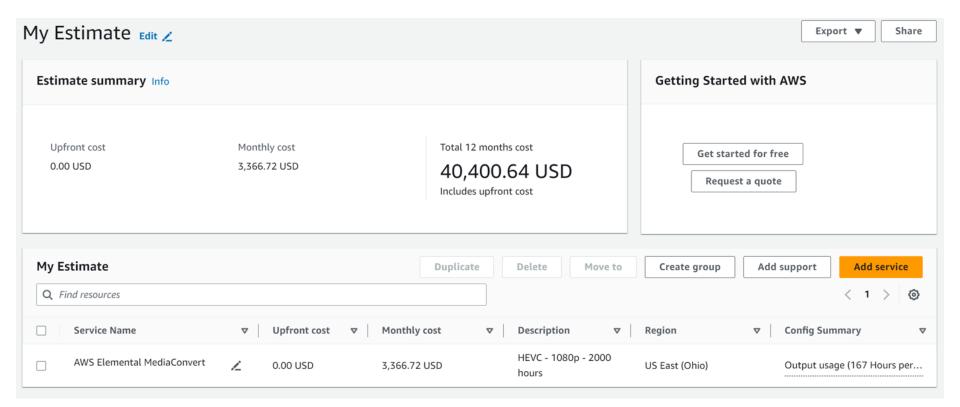
10-bit vs. 8-bit Output

- Question: Does encoding
 8-bit source as 10-bit HEVC
 output improve quality?
- No, but difference is minor

	8-bit	10-bit	Delta
El Ultimo	96.10	96.08	0.02%
Football	94.50	94.33	0.18%
Freedom	92.07	92.06	0.01%
Meridian	95.94	95.94	0.00%
Soccer	96.93	96.76	0.18%
TOS	95.57	95.49	0.09%
Zoo	97.51	97.23	0.28%

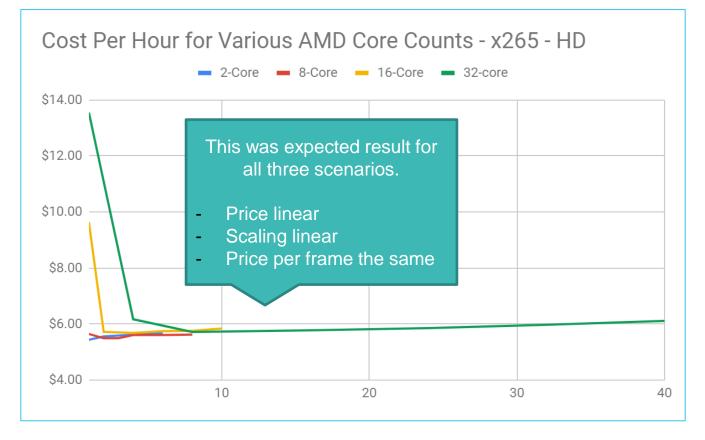

Best Instance for x265

- Three types of instances on AWS
 - Intel (c6i.xlarge) Compute/Intel
 - AMD (c6a.xlarge) Compute/AMD
 - AWS Graviton (c7g.xlarge) Compute Graviton
- Which encodes most efficiently?
- Test methodology

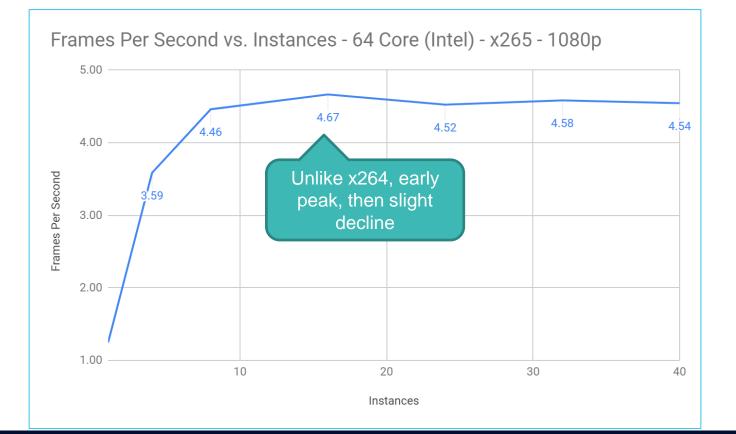

The Winner Is - For x265 1080p - AMD

The Winner Is - For x265 1080p – AMD (\$2,000 hours)

Reality Check: MediaConvert Pricing - 2000 hours HEVC HQ



Encoding String


ffmpeg -y -i Football_short.mp4 -c:v libx265 -preset slower -x265-params
keyint=60:min-keyint=60:scenecut=0:bitrate=3500:pass=1 -f mp4 /dev/null

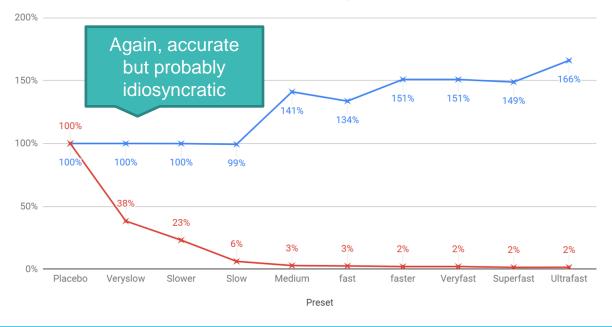
ffmpeg -y -i Football_short.mp4 -c:v libx265 -preset slower -x265-params
keyint=60:min-keyint=60:scenecut=0:bitrate=3500:vbv-maxrate=7000:vbvbufsize=7000:pass=2 Football_x265_HD_output.mp4

Most Efficient CPU Core Count?

On 64-core Intel Workstation

x265 - 10-Bit 4K

- Preset
- Bitrate control
- Scaling
- Best AWS CPU
- Best core count


HEVC -10-bit 1080p Preset

HEVC - 8-bit 1080p Preset

Bitrate and Encoding time - x265 4K/10-bit

★ Bitrate ★ Encoding time

Preset	Bitrate	Encoding time
Ultrafast	166%	2%
Superfast	149%	2%
Veryfast	151%	2%
faster	151%	2%
fast	134%	3%
Medium	141%	3%
Slow	99%	6%
Slower	100%	23%
Veryslow	100%	38%
Placebo	100%	100%

x265 - 1080p - Viewer Count Breakeven - \$0.08/CP

At higher bandwidth costs, saving bandwidth matters more than encoding costs.

		Bitrate		15000						matters
Big change	es	MBytes	per hour	6750		Cost p	er GB	0.08		encod
		Encode/	Encode/hr							
Preset	Encode	Band	width		50	100	250	500	1000	5000
Ultrafast	\$1.45	13.13	\$1.05		\$54	\$107	\$264	\$527	\$1,052	\$5,255
Superfast	\$1.61	11.49	\$0.92		\$48	\$94	\$231	\$461	\$921	\$4,598
Veryfast	\$2.00	10.12	\$0.81		\$42	\$83	\$204	\$407	\$812	\$4,050
faster	\$2.70	8.44	\$0.68		\$36	\$70	\$172	\$340	\$678	\$3,380
fast	\$3.42	8.43	\$0.67		\$37	\$71	\$172	\$340	\$678	\$3,374
Medium	\$3.94	7.52	\$0.60		\$34	\$64	\$154	\$305	\$606	\$3,013
Slow	\$5.68	7.22	\$0.58		\$35	\$63	\$150	\$294	\$583	\$2,893
Slower	\$8.04	7.03	\$0.56		\$36	\$64	\$149	\$289	\$570	\$2,818
Veryslow	\$15.00	6.75	\$0.54		\$42	\$69	\$150	\$285	\$555	\$2,715
Placebo	\$59.69	6.77	\$0.54		\$87	\$114	\$195	\$330	\$601	\$2,766

x265 - 1080p - Viewer Count Breakeven - \$0.04/GB

		Bitrate		15000						
		MBytes	MBytes per hour			Cost p	oer GB	0.04		
		Encode/	hr	15						
Preset	Encode	Band	width		50	100	250	500	1000	5000
Ultrafast	\$1.45	13.13	\$0.53		\$28	\$54	\$133	\$264	\$527	\$2,628
Superfast	\$1.61	11.49	\$0.46		\$25	\$48	\$117	\$231	\$461	\$2,300
Veryfast	\$2.00	10.12	\$0.40		\$22	\$42	\$103	\$204	\$407	\$2,026
faster	\$2.70	8.44	\$0.34		\$20	\$36	\$87	\$172	\$340	\$1,692
fast	\$3.42	8.43	\$0.34		\$20	\$37	\$88	\$172	\$340	\$1,689
Medium	\$3.94	7.52	\$0.30		\$19	\$34	\$79	\$154	\$305	\$1,509
Slow	\$5.68	7.22	\$0.29		\$20	\$35	\$78	\$150	\$294	\$1,449
Slower	\$8.04	7.03	\$0.28		\$22	\$36	\$78	\$149	\$289	\$1,413
Veryslow	\$15.00	6.75	\$0.27		\$29	\$42	\$83	\$150	\$285	\$1,365
Placebo	\$59.69	6.77	\$0.27		\$73	\$87	\$127	\$195	\$330	\$1,413

x264 - Viewer Count Breakeven - \$0.02/GB

As bandwidth costs drop, encoding cost matters longer (but still not that long)

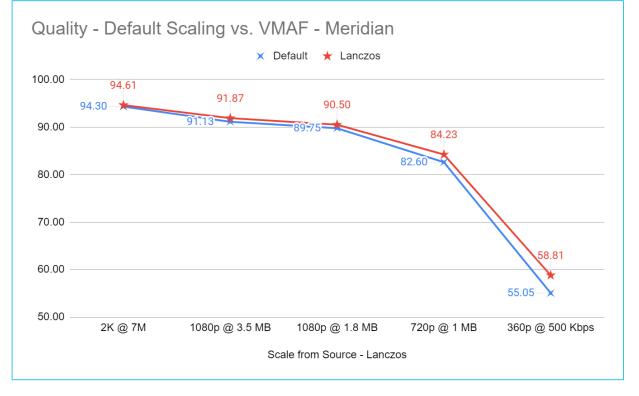
		Bitrate		15000							
		MBytes	per hour	6750		Cost p	oer GB	0.02			
		Encode/	hr	15							
Preset	Encode	Band	width		50	100	250	500	1000	5000	
Ultrafast	\$1.45	13.13	\$0.26		\$15	\$28	\$67	\$133	\$264	\$1,315	
Superfast	\$1.61	11.49	\$0.23		\$13	\$25	\$59	\$117	\$231	\$1,151	
Veryfast	\$2.00	10.12	\$0.20		\$12	\$22	\$53	\$103	\$204	\$1,014	
faster	\$2.70	8.44	\$0.17		\$11	\$20	\$45	\$87	\$172	\$847	
fast	\$3.42	8.43	\$0.17		\$12	\$20	\$46	\$88	\$172	\$846	
Medium	\$3.94	7.52	\$0.15		\$11	\$19	\$42	\$79	\$154	\$756	
Slow	\$5.68	7.22	\$0.14		\$13	\$20	\$42	\$78	\$150	\$728	
Slower	\$8.04	7.03	\$0.14		\$15	\$22	\$43	\$78	\$149	\$711	
Veryslow	\$15.00	6.75	\$0.14		\$22	\$29	\$49	\$83	\$150	\$690	
Placebo	\$59.69	6.77	\$0.14		\$66	\$73	\$94	\$127	\$195	\$736	

x264 - Viewer Count Breakeven - \$0.02/GB

As bandwidth costs drop, encoding cost matters longer (but still not that long)

		Bitrate 1		15000						
		MBytes	per hour	6750		Cost p	oer GB	0.02		
		Encode/	hr	15						
Preset	Encode	Band	width		50	100	250	500	1000	5000
Ultrafast	\$1.45	13.13	\$0.26		\$15	\$28	\$67	\$133	\$264	\$1,315
Superfast	\$1.61	11.49	\$0.23		\$13	\$25	\$59	\$117	\$231	\$1,151
Veryfast	\$2.00	10.12	\$0.20		\$12	\$22	\$53	\$103	\$204	\$1,014
faster	\$2.70	8.44	\$0.17		\$11	\$20	\$45	\$87	\$172	\$847
fast	\$3.42	8.43	\$0.17		\$12	\$20	\$46	\$88	\$172	\$846
Medium	\$3.94	7.52	\$0.15		\$11	\$19	\$42	\$79	\$154	\$756
Slow	\$5.68	7.22	\$0.14		\$13	\$20	\$42	\$78	\$150	\$728
Slower	\$8.04	7.03	\$0.14		\$15	\$22	\$43	\$78	\$149	\$711
Veryslow	\$15.00	6.75	\$0.14		\$22	\$29	\$49	\$83	\$150	\$690
Placebo	\$59.69	6.77	\$0.14		\$66	\$73	\$94	\$127	\$195	\$736

Scaling with Lanczos for Lower Rungs


How Scaling Method and Technique Impacts Quality and Throughput

https://bit.ly/ffmpeg_scaling

- FFmpeg default scaling is bilinear
- Lanczos gives slightly higher quality in lower rungs
 - (-vf scale=1280×720 -sws_flags lanczos)
- No impact on throughput

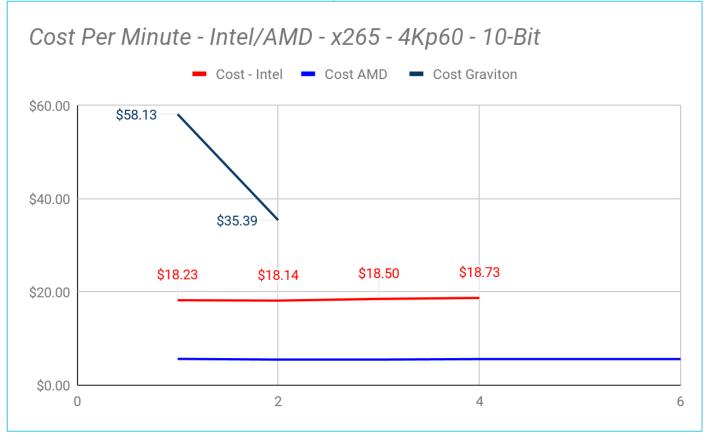
Scaling - Meridian

	Default	Lanczos
2K @ 7M	94.30	94.61
1080p @ 3.5 MB	91.13	91.87
1080p @ 1.8 MB	89.75	90.50
720p @ 1 MB	82.60	84.23
360p @ 500 Kbps	55.05	58.81

VMAF	Default	Lanczos
2K @ 7M	88.50	88.62
1080p @ 3.5 MB	79.10	79.12
1080p @ 1.8 MB	68.70	68.91
720p @ 1 MB	59.67	60.06
360p @ 500 Kbps	43.25	44.90

Scaling - Football

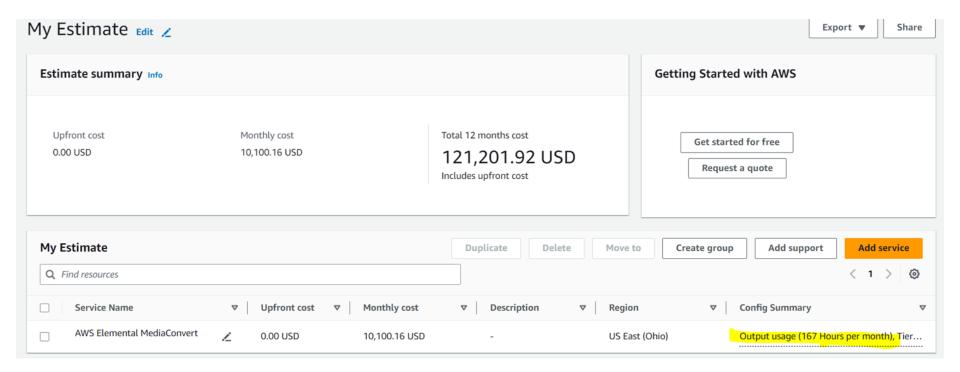
Quality - Default Scaling vs. VMAF - Football						
		×D	efault ★ Lanczos			
90.00	38.50 *	79.12				
80.00 —		79.10	68.91			
70.00 —			68.70	60.06		
60.00 —				59:67		
50.00 —					44.90	
40.00 —	2K @ 7M	1080p @ 3.5 MB	1080p @ 1.8 MB	720p @ 1 MB	360p @ 500 Kbps	
Scale from Source - Lanczos						



• Not a major difference, but no downside

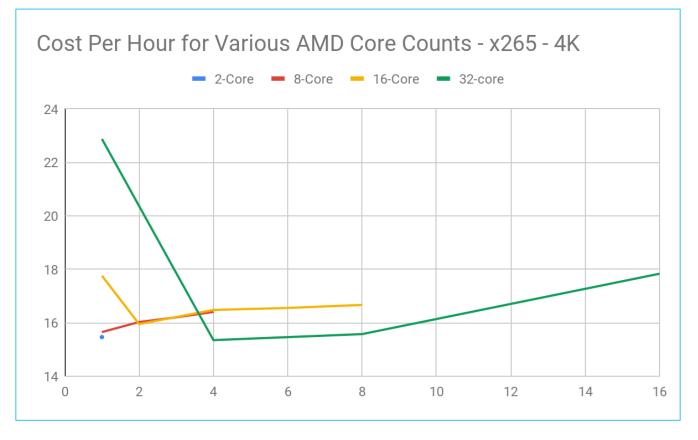
Best Instance for x265

- Three types of instances on AWS
 - Intel (c6i.xlarge) Compute/Intel
 - AMD (c6a.xlarge) Compute/AMD
 - AWS Graviton (c7g.xlarge) Compute Graviton
- Which encodes most efficiently?
- Test methodology

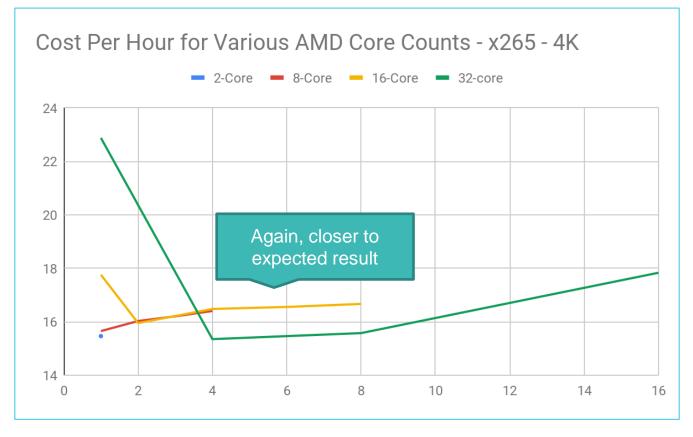

The Winner Is - For x265 1080p - AMD

The Winner Is - For x265 4K - 10bit

Reality Check: MediaConvert Pricing - 2000 hours AVC HQ



ffmpeg -y -i Football_4K60.mp4 -c:v libx265 -preset slow -x265-params keyint=120:minkeyint=120:scenecut=0:bitrate=12500K:pass=1 -f mp4 /dev/null


ffmpeg -y -i Football_4K60.mp4 -c:v libx265 -preset slow -x265-params keyint=120:minkeyint=120:scenecut=0:bitrate=12500K:vbv-maxrate=25000K:vbv-bufsize=25000K:pass=2 Football_4K_output.mp4

Most Efficient CPU Core Count?

Desktop – 64-core Intel

Bonus Content - What I learned about AWS

- Caveat:
 - I am not an expert in running a cloud encoding facility
 - Sharing random data points you might find useful
- One instance almost never delivers best performance
- Different instances for different jobs
- Best performance varies by codec
 - x264 gets slightly more efficient with more jobs
 - x265 reaches peak and then drops slowly

One Instance Never Best Performance 32-core

PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
3198 ubuntu	20	0 3	3698044	1.2g	16264 S	1767	2.0	1:41.07 ffmpeg

Single instance = 1767%/3200%

PID USER	PR	NI VI	RT RES	SHR S	%CPU	%MEM	TIME+ COMMAND
3435 ubuntu	20	0 42245	08 1.6g	16124 S	541.7	2.5	1:25.65 ffmpeg
3436 ubuntu	20	0 42245	36 1.6g	16172 S	522.0	2.5	1:25.59 ffmpeg
3433 ubuntu	20	0 42245	12 1.6g	16380 S	507.0	2.5	1:24.36 ffmpeg
3434 ubuntu	20	0 42245	12 1.6g	16372 S	493.7	2.5	1:22.31 ffmpeg
4067 1 1	~ ~						4 94 97 11

Four instances = 2063%/3200%

78

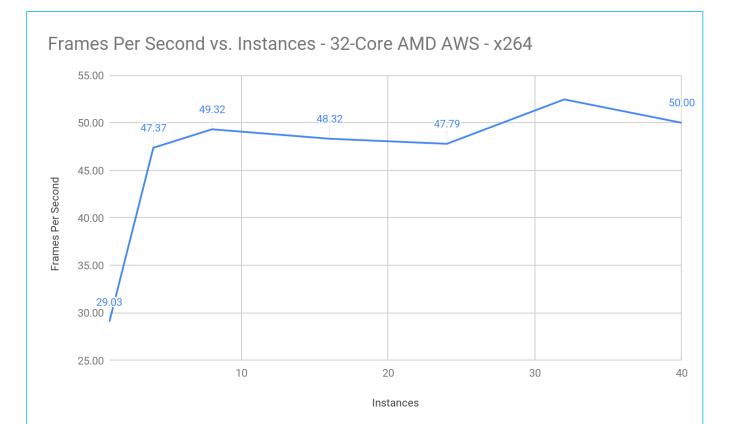
One Instance Never Best Performance 32-core

PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
11425 ubuntu	20	0	4224504	1.6g	16392 S	316.7	2.5	1:16.34 ffmpeg
11429 ubuntu	20	0	4224536	1.6g	15820 S	302.7	2.5	1:16.64 ffmpeg
11430 ubuntu	20	0	4224576	1.6g	16392 S	302.0	2.5	1:16.96 ffmpeg
11422 ubuntu	20	0	4224512	1.6g	16392 S	299.3	2.5	1:16.25 ffmpeg
11420 ubuntu	20	0	4224548	1.6g	16392 S	296.3	2.5	1:16.54 ffmpeg
11431 ubuntu	20	0	4224524	1.6g	16392 S	295.3	2.5	1:15.93 ffmpeg
11428 ubuntu	20	0	4224512	1.6g	15896 S	287.7	2.5	1:15.83 ffmpeg
11427 ubuntu	20	0	4224616	1.6g	16376 S	286.0	2.5	1:16.33 ffmpeg

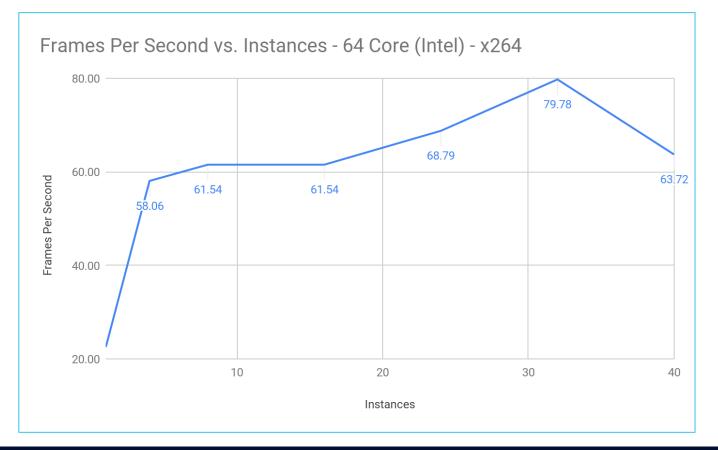
Eight instances = 2400%/3200%

79

One Instance Never Best Performance 32-core

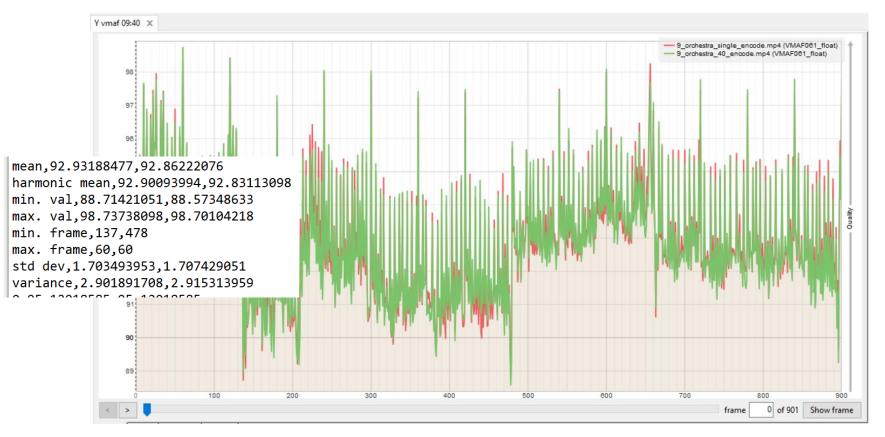

PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
12654 ubuntu	20	0	4224376	1.5g	16328 S	199.3	2.5	0:37.61 ffmpeg
12644 ubuntu	20	0	4224372	1.5g	16328 S	198.7	2.5	0:39.35 ffmpeg
12640 ubuntu	20	0	4224372	1.5g	16320 S	196.7	2.5	0:38.29 ffmpeg
12643 ubuntu	20	0	4224532	1.5g	16328 S	192.0	2.5	0:37.34 ffmpeg
12657 ubuntu	20	0	4224372	1.5g	16328 S	190.7	2.5	0:36.99 ffmpeg
12650 ubuntu	20	0	4224372	1.5g	16328 S	188.3	2.5	0:37.39 ffmpeg
12652 ubuntu	20	0	4224376	1.5g	16328 S	187.3	2.5	0:37.49 ffmpeg
12636 ubuntu	20	0	4224376	1.5g	16312 S	187.0	2.5	0:36.74 ffmpeg
12656 ubuntu	20	0	4224376	1.5g	16328 S	184.3	2.5	0:37.81 ffmpeg
12648 ubuntu	20	0	4224532	1.5g	16328 S	184.0	2.5	0:37.83 ffmpeg
12659 ubuntu	20	0	4224372	1.5g	16328 S	180.3	2.5	0:36.73 ffmpeg
12634 ubuntu	20	0	4224376	1.5g	16328 S	180.0	2.5	0:37.24 ffmpeg
12661 ubuntu	20	0	4224372	1.5g	16328 S	179.0	2.5	0:37.57 ffmpeg
12642 ubuntu	20	0	4224376	1.5g	16308 S	178.3	2.5	0:37.09 ffmpeg
12660 ubuntu	20	0	4224376	1.5g	16328 S	178.0	2.5	0:36.79 ffmpeg
12647 ubuntu	20	0	4224376	1.5g	16328 S	175.7	2.5	0:36.63 ffmpeg

16 instances = 2960%/3200%


PID USER	PR	NI	VIRT	RES	SHR	S	%CPU	%MEM	TIME+	Command
15076 ubuntu	20	0	4224376	1.5g	16128	S	144.6	2.5	0:24.71	ffmpeg
15097 ubuntu	20	0	4224372	1.5g	16328	S	143.9	2.5	0:25.97	ffmpeg
15103 ubuntu	20	0	4224376	1.5g	16328	S	140.9	2.5	0:24.38	ffmpeg
15063 ubuntu	20	0	4224372	1.5g	16268	R	140.6	2.5	0:24.35	ffmpeg
15068 ubuntu	20	0	4224376	1.5g	16044	S	139.9	2.5	0:24.72	ffmpeg
15082 ubuntu	20	0	4224372	1.5g	16328	R	137.0	2.5	0:24.24	ffmpeg
15081 ubuntu	20	0	4224372	1.5g	16328	S	135.6	2.5	0:24.50	ffmpeg
15101 ubuntu	20	0	4224376	1.5g	16328	S	134.7	2.5	0:24.83	ffmpeg
15073 ubuntu	20	0	4224372	1.5g	16328	S	134.0	2.5	0:24.31	ffmpeg
15074 ubuntu	20	0	4224376	1.5g	16084	S	134.0	2.5	0:25.21	ffmpeg
15102 ubuntu	20	0	4224376	1.5g	16328	S	134.0	2.5	0:25.75	ffmpeg
15104 ubuntu	20	0	4224372	1.5g	16328	S	130.7	2.5	0:24.11	ffmpeg
15069 ubuntu	20	0	4224376	1.5g	16120	S	130.4	2.5	0:24.07	ffmpeg
15078 ubuntu	20	0	4224376	1.5g	16328	S	129.0	2.5	0:24.15	ffmpeg
15094 ubuntu	20	0	4224376	1.5g	16328	S	128.1	2.5	0:24.95	ffmpeg
15100 ubuntu	20	0	4224376	1.5g	16328	S	128.1	2.5	0:26.10	ffmpeg
15086 ubuntu	20	0	4224376	1.5g	16328	S	127.7	2.5	0:25.58	ffmpeg
15089 ubuntu	20	0	4224372	1.5g	16328	S	126.1	2.5	0:23.84	ffmpeg
15061 ubuntu	20	0	4224372	1.5g	16280	S	125.4	2.5	0:23.55	ffmpeg
15067 ubuntu	20	0	4224372	1.5g	16228	S	123.8	2.5	0:24.08	ffmpeg
15092 ubuntu	20	0	4224376	1.5g	16328	S	121.8	2.5	0:24.61	ffmpeg
15071 ubuntu	20	0	4224372	1.5g	16328	S	119.8	2.5	0:23.94	ffmpeg
15090 ubuntu	20	0	4224376	1.5g	16328	S	119.8	2.5	0:24.31	ffmpeg
15084 ubuntu	20	0	4224372	1.5g	16328	S	119.5	2.5	0:25.58	ffmpeg

24 instances = ~3120%/3200%

Frames Per Second - 32-core AWS AMD Instance


Frames Per Second - 64-core Intel Workstation

Quality Delta - Single vs. 40 encode

Quality Delta - Single vs. 40 encode

Varies by Encode - 4K/60 10-bit x265

PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
4761 ubuntu	20	0	8534308	4.1g	18184 S	1592	6.6	4:21.82 ffmpeg

Single instance = 1592%/3200%

PID USER	PR	NI	VIRT	RES	SHR S	%CPU	%MEM	TIME+ COMMAND
4912 ubuntu	20	0	8527964	4.1g	18160 S	950.2	6.6	2:14.65 ffmpeg
4913 ubuntu	20	0	8527700	4.1g	17796 S	755.1	6.6	2:01.54 ffmpeg
4914 ubuntu	20	0	8507232	4.1g	17820 S	740.5	6.6	2:04.54 ffmpeg
4911 ubuntu	20	0	8527696	4.1g	18156 S	733.9	6.6	2:04.40 ffmpeg


Four instances = 3178%/3200%

86

FPS - 32-core AWS AMD - x265 4Kp60 10-bit

FPS - 32-core AWS AMD - x265 - 1080p 8-bit

